欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    电磁场电磁波第三章静态场及其边值问题的解.ppt

    • 资源ID:6391499       资源大小:1.05MB        全文页数:63页
    • 资源格式: PPT        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    电磁场电磁波第三章静态场及其边值问题的解.ppt

    1,第3章 静态电磁场及其边值问题的解,2,本章内容 3.1 静电场分析 3.2 导电媒质中的恒定电场分析 3.3 恒定磁场分析 3.4 静态场的边值问题及解的惟一性定理 3.5 镜像法 3.6 分离变量法,静态电磁场:场量不随时间变化,包括:静电场、恒定电场和恒定磁场,时变情况下,电场和磁场相互关联,构成统一的电磁场 静态情况下,电场和磁场由各自的源激发,且相互独立,3,2.边界条件,微分形式:,本构关系:,1.基本方程,积分形式:,或,或,3.1.1 静电场的基本方程和边界条件,若分界面上不存在面电荷,即,则,4,在静电平衡的情况下,导体内部的电场为0,则导体表面的边界条件为,或,场矢量的折射关系,导体表面的边界条件,5,由,即静电场可以用一个标量函数的梯度来表示,标量函数 称为静电场的标量电位或简称电位。,1.电位函数的定义,电位函数,6,2.电位的表达式,对于连续的体分布电荷,由,同理得,面电荷的电位:,故得,点电荷的电位:,线电荷的电位:,7,3.电位差,上式两边从点P到点Q沿任意路径进行积分,得,关于电位差的说明,P、Q 两点间的电位差等于电场力将单位正电荷从P点移至Q 点 所做的功,电场力使单位正电荷由高电位处移到低电位处。电位差也称为电压,可用U 表示。电位差有确定值,只与首尾两点位置有关,与积分路径无关。,8,静电位不惟一,可以相差一个常数,即,选参考点,令参考点电位为零,电位确定值(电位差),两点间电位差有定值,选择电位参考点的原则 应使电位表达式有意义。应使电位表达式最简单。若电荷分布在有限区域,通常取无 限远作电位参考点。同一个问题只能有一个参考点。,4.电位参考点,为使空间各点电位具有确定值,可以选定空间某一点作为参考点,且令参考点的电位为零,由于空间各点与参考点的电位差为确定值,所以该点的电位也就具有确定值,即,9,在均匀介质中,有,5.电位的微分方程,在无源区域,,10,6.静电位的边界条件,设P1和P2是介质分界面两侧紧贴界面的相邻两点,其电位分别为1和2。当两点间距离l0时,导体表面上电位的边界条件:,由 和,若介质分界面上无自由电荷,即,常数,,11,电容是导体系统的一种基本属性,是描述导体系统 储存电荷能力的物理量。,孤立导体的电容定义为所带电量q与其电位 的比值,即,电容,孤立导体的电容,两个带等量异号电荷(q)的 导体组成的电容器,其电容为,电容的大小只与导体系统的几何尺寸、形状和及周围电介质 的特性参数有关,而与导体的带电量和电位无关。,12,如果充电过程进行得足够缓慢,就不会有能量辐射,充电过程中外加电源所做的总功将全部转换成电场能量,或者说电场能量就等于外加电源在此电场建立过程中所做的总功。,静电场能量来源于建立电荷系统的过程中外源提供的能量。,静电场最基本的特征是对电荷有作用力,这表明静电场具有 能量。,任何形式的带电系统,都要经过从没有电荷分布到某个最终电荷分布的建立(或充电)过程。在此过程中,外加电源必须克服电荷之间的相互作用力而做功。,3.1.4 静电场的能量,13,1.静电场的能量,设系统从零开始充电,最终带电量为 q、电位为。充电过程中某一时刻的电荷量为q、电位为。(01)当增加为(+d)时,外电源做功为:(q d)。对从0 到 1 积分,即得到外电源所做的总功为,根据能量守恒定律,此功也就是电量为 q 的带电体具有的电场能量We,即,对于电荷体密度为的体分布电荷,体积元dV中的电荷dV具有的电场能量为,14,故体分布电荷的电场能量为,对于面分布电荷,电场能量为,15,2.电场能量密度,从场的观点来看,静电场的能量分布于电场所在的整个空间。,电场能量密度:,电场的总能量:,对于线性、各向同性介质,则有,16,例 半径为a 的球形空间内均匀分布有电荷体密度为的电荷,试求静电场能量。,解:方法一,利用 计算,根据高斯定理求得电场强度,故,17,方法二:利用 计算,先求出电位分布,故,18,3.2 导电媒质中的恒定电场分析,本节内容 3.2.1 恒定电场的基本方程和边界条件 3.2.2 恒定电场与静电场的比拟 3.2.3 漏电导,19,由JE 可知,导体中若存在恒定电流,则必有维持该电流的电场,虽然导体中产生电场的电荷作定向运动,但导体中的电荷分布是一种不随时间变化的恒定分布,这种恒定分布电荷产生的电场称为恒定电场。,恒定电场与静电场的重要区别:(1)恒定电场可以存在于导体内部。(2)恒定电场中有电场能量的损耗,要维持导体中的恒定电流,就必须有外加电源来不断补充被损耗的电场能量。,恒定电场和静电场都是有源无旋场,具有相同的性质。,3.2.1 恒定电场的基本方程和边界条件,20,1.基本方程,恒定电场的基本方程为,微分形式:,积分形式:,恒定电场的基本场矢量是电流密度 和电场强度,线性各向同性导电媒质的本构关系,恒定电场的电位函数,由,若媒质是均匀的,则,21,2.恒定电场的边界条件,场矢量的边界条件,即,即,导电媒质分界面上的电荷面密度,场矢量的折射关系,22,电位的边界条件,恒定电场同时存在于导体内部和外部,在导体表面上的电场 既有法向分量又有切向分量,电场并不垂直于导体表面,因 而导体表面不是等位面;,说明:,23,如2 1、且290,则10,即电场线近似垂直于良导体表面。此时,良导体表面可近似地看作为 等位面;,若媒质1为理想介质,即10,则 J1=0,故J2n=0 且 E2n=0,即导体 中的电流和电场与分界面平行。,24,3.2.2 恒定电场与静电场的比拟,如果两种场,在一定条件下,场方程有相同的形式,边界形状相同,边界条件等效,则其解也必有相同的形式,求解这两种场分布必然是同一个数学问题。只需求出一种场的解,就可以用对应的物理量作替换而得到另一种场的解。这种求解场的方法称为比拟法。,25,恒定电场与静电场的比拟,基本方程,静电场(区域),本构关系,位函数,边界条件,恒定电场(电源外),26,工程上,常在电容器两极板之间、同轴电缆的芯线与外壳之间,填充不导电的材料作电绝缘。这些绝缘材料的电导率远远小于金属材料的电导率,但毕竟不为零,因而当在电极间加上电压U 时,必定会有微小的漏电流 J 存在。,漏电流与电压之比为漏电导,即,其倒数称为绝缘电阻,即,3.2.3 漏电导,27,例 求同轴电缆的绝缘电阻。设内外的半径分别为a、b,长度为l,其间媒质的电导率为、介电常数为。,解:直接用恒定电场的计算方法,电导,绝缘电阻,设由内导体流向外导体的电流为I。,28,本节内容 3.3.1 恒定磁场的基本方程和边界条件 恒定磁场的矢量磁位和标量磁位 电感 恒定磁场的能量 磁场力,3.3 恒定磁场分析,29,微分形式:,1.基本方程,2.边界条件,本构关系:,或,若分界面上不存在面电流,即JS0,则,积分形式:,或,3.3.1 恒定磁场的基本方程和边界条件,30,矢量磁位的定义,磁矢位的任意性 与电位一样,磁矢位也不是惟一确定的,它加上任意一个标量 的梯度以后,仍然表示同一个磁场,即,由,即恒定磁场可以用一个矢量函数的旋度来表示。,磁矢位的任意性是因为只规定了它的旋度,没有规定其散度造成的。为了得到确定的A,可以对A的散度加以限制,在恒定磁场中通常规定,并称为库仑规范。,1.恒定磁场的矢量磁位,3.3.2 恒定磁场的矢量磁位和标量磁位,31,磁矢位的微分方程,在无源区:,其解,于是,矢量位满足的泊松方程的解为,(静电位的泊松方程的解为:),33,磁矢位的边界条件,对于面电流和细导线电流回路,磁矢位分别为,利用磁矢位计算磁通量:,细线电流:,面电流:,34,2.恒定磁场的标量磁位,一般情况下,恒定磁场只能引入磁矢位来描述,但在无传导电流(J0)的空间 中,则有,即在无传导电流(J0)的空间中,可以引入一个标量位函数来描述磁场。,标量磁位的引入,磁标位的微分方程,将 代入,35,与静电位相比较,有,标量磁位的边界条件,在线性、各向同性的均匀媒质中,标量磁位的表达式,和,式中:,等效磁荷面密度,或,36,1.磁通与磁链,3.3.3 电感,单匝线圈形成的回路的磁链定 义为穿过该回路的磁通量,多匝线圈形成的导线回路的磁 链定义为所有线圈的磁通总和,粗导线构成的回路,磁链分为 两部分:一部分是粗导线包围 的、磁力线不穿过导体的外磁通量o;另一部分是磁力线穿过 导体、只有粗导线的一部分包围的内磁通量i。,37,设回路 C 中的电流为I,所产生的磁场与回路 C 交链的磁链为,则磁链 与回路 C 中的电流 I 有正比关系,其比值,称为回路 C 的自感系数,简称自感。,外自感,2.自感,内自感;,粗导体回路的自感:L=Li+Lo,自感只与回路的几何形状、尺寸以及周围的磁介质有关,与电流无关。,自感的特点:,38,解:先求内导体的内自感。设同轴线中的电流为I,由安培环路定理,穿过沿轴线单位长度的矩形面积元dS=d的磁通为,例求同轴线单位长度的自感。设内导体半径为a,外导体厚度可忽略不计,其半径为b,空气填充。,得,与di 交链的电流为,则与di 相应的磁链为,39,因此内导体中总的内磁链为,故单位长度的内自感为,再求内、外导体间的外自感。,则,故单位长度的外自感为,单位长度的总自感为,40,对两个彼此邻近的闭合回路C1 和回路 C2,当回路 C1 中通过电流 I1 时,I1产生的磁场不仅与回路 C1 本身相交链,而且与回路 C2 交链,交链的磁链21 也与 I1 成正比,其比例系数,称为回路 C1 对回路 C2 的互感系数,简称互感。,3.互感,同理,回路 C2 对回路 C1 的互感为,41,互感只与回路的几何形状、尺寸、两回路的相对位置以及周围 磁介质有关,而与电流无关。,满足互易关系,即M12=M21,当与回路交链的互感磁通与自感磁通具有相同的符号时,互 感系数 M 为正值;反之,则互感系数 M 为负值。,互感的特点:,42,3.3.4 恒定磁场的能量,1.磁场能量,在恒定磁场建立过程中,电源克服感应电动势做功所供给的能量,就全部转化成磁场能量。,电流回路在恒定磁场中受到磁场力的作用而运动,表明恒定 磁场具有能量。,磁场能量是在建立电流的过程中,由电源供给的。当电流从 零开始增加时,回路中的感应电动势要阻止电流的增加,因 而必须有外加电压克服回路中的感应电动势。,假定建立并维持恒定电流时,没有热损耗。,假定在恒定电流建立过程中,电流的变化足够缓慢,没有辐 射损耗。,43,2.磁场能量密度,从场的观点来看,磁场能量分布于磁场所在的整个空间。,磁场能量密度:,磁场的总能量:,对于线性、各向同性介质,则有,44,例 同轴电缆的内导体半径为a,外导体的内、外半径分别为 b 和 c,如图所示。导体中通有电流 I,试求同轴电缆中单位长度储存的磁场能量。,解:由安培环路定理,得,45,三个区域单位长度内的磁场能量分别为,46,单位长度内总的磁场能量为,47,3.4 静态场的边值问题及解的惟一性定理,本节内容 3.4.1 边值问题的类型 3.4.2 惟一性定理,边值问题:在给定的边界条件下,求解位函数的泊松方程或 拉普拉斯方程,48,3.4.1 边值问题的类型,已知场域边界面S 上的位函数值,即,第一类边值问题(或狄里赫利问题),已知场域边界面S 上的位函数的法向导数值,即,已知场域一部分边界面S1 上的位函数值,而另一部分边界面S2 上则已知位函数的法向导数值,即,第三类边值问题(或混合边值问题),第二类边值问题(或纽曼问题),49,自然边界条件(无界空间),周期边界条件,衔接条件,不同媒质分界面上的边界条件,如,50,例:,(第一类边值问题),(第三类边值问题),例:,51,在场域V 的边界面S上给定 或 的值,则泊松方程或拉普拉斯方程在场域V 具有惟一值。,3.4.2 惟一性定理,惟一性定理的重要意义,给出了静态场边值问题具有惟一解的条件,为静态场边值问题的各种求解方法提供了理论依据,为求解结果的正确性提供了判据,惟一性定理的表述,52,惟一性定理的证明,反证法:假设解不惟一,则有两个位函数和 在场域V内满足同样的方程,即,且在边界面S 上有,令,则在场域V内,且在边界面S 上满足同样的边界条件。,或,或,53,由格林第一恒等式,可得到,对于第一类边界条件:,对于第二类边界条件:若 和 取同一点Q为参考点,则,对于第三类边界条件:,54,本节内容 3.5.1 镜像法的基本原理 3.5.2 接地导体平面的镜像 3.5.3 导体球面的镜像 3.5.4 导体圆柱面的镜像 3.5.5 点电荷与无限大电介质平面的镜像 3.5.6 线电流与无限大磁介质平面的镜像,3.5 镜像法,55,当有电荷存在于导体或介质表面附近时,导体和介质表面会出现感应电荷或极化电荷,而感应电荷或极化电荷将影响场的分布。,非均匀感应电荷产生的电位很难求解,可以用等效电荷的电位替代,1.问题的提出,几个实例,3.5.1 镜像法的基本原理,接地导体板附近有一个点电荷,如图所示。,56,接地导体球附近有一个点电荷,如图。,非均匀感应电荷产生的电位很难求解,可以用等效电荷的电位替代,接地导体柱附近有一个线电荷。情况与上例类似,但等效电 荷为线电荷。,q,非均匀感应电荷,q,等效电荷,结论:所谓镜像法是将不均匀电荷分布的作用等效为点电荷 或线电荷的作用。,问题:这种等效电荷是否存在?这种等效是否合理?,57,2.镜像法的原理,用位于场域边界外虚设的较简单的镜像电荷分布来等效替代该边界上未知的较为复杂的电荷分布,从而将原含该边界的非均匀媒质空间变换成无限大单一均匀媒质的空间,使分析计算过程得以明显简化的一种间接求解法。,在导体形状、几何尺寸、带电状况和媒质几何结构、特性不变的前提条件下,根据惟一性定理,只要找出的解答满足在同一泛定方程下问题所给定的边界条件,那就是该问题的解答,并且是惟一的解答。镜像法正是巧妙地应用了这一基本原理、面向多种典型结构的工程电磁场问题所构成的一种有效的解析求解法。,3.镜像法的理论基础 解的惟一性定理,58,像电荷的个数、位置及其电量大小“三要素”。,4.镜像法应用的关键点,5.确定镜像电荷的两条原则,等效求解的“有效场域”。,镜像电荷的确定,像电荷必须位于所求解的场区域以外的空间中。,像电荷的个数、位置及电荷量的大小以满足所求解的场 区域 的边界条件来确定。,59,1.点电荷对无限大接地导体平面的镜像,满足原问题的边界条件,所得的结果是正确的。,3.5.2 接地导体平面的镜像,镜像电荷,电位函数,因 z=0 时,,有效区域,60,2.线电荷对无限大接地导体平面的镜像,镜像线电荷:,满足原问题的边界条件,所得的解是正确的。,电位函数,原问题,当z=0 时,,61,3.点电荷对相交半无限大接地导体平面的镜像,如图所示,两个相互垂直相连的半无限大接地导体平板,点电荷q 位于(d1,d2)处。,显然,q1 对平面 2 以及 q2 对平面 1 均不能满足边界条件。,对于平面1,有镜像电荷q1=q,位于(d1,d2),对于平面2,有镜像电荷q2=q,位于(d1,d2),只有在(d1,d2)处再设置一镜像电荷q3=q,所有边界条件才能得到满足。,电位函数,62,3.5.3 导体球面的镜像,1.点电荷对接地导体球面的镜像,球面上的感应电荷可用镜像电荷q来等效。q 应位于导体球内(显然不影响原方程),且在点电荷q与球心的连线上,距球心为d。则有,如图所示,点电荷q 位于半径为a 的接地导体球外,距球心为d。,方法:利用导体球面上电位为零确定 和 q。,问题:,63,令ra,由球面上电位为零,即 0,得,此式应在整个球面上都成立。,条件:若,由于,

    注意事项

    本文(电磁场电磁波第三章静态场及其边值问题的解.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开