欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOCX文档下载
     

    冶金专业炼铁厂年产175万吨高炉毕业设计.docx

    • 资源ID:4803804       资源大小:1.13MB        全文页数:60页
    • 资源格式: DOCX        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    冶金专业炼铁厂年产175万吨高炉毕业设计.docx

    河北联合大学轻工学院QINGGONG COLLEGE, HEBEI UNITED UNIVERSITY毕业设计说明书设计题目:设计一座年产生铁275万吨的高炉车间学生姓名:孟祥松学 号:202115090113专业班级:09冶金1班学 部:材料化工部指导教师:蒋武锋 讲师2013年05月24日摘 要本设计是根据唐山地区条件设计的一个年产275万吨的高炉炼铁车间。整个车间的平面布置采用半岛式平面布置形式。设计的高炉有效容积是1982m3。其中高炉的炉衬设计方法采用的是均衡炉衬的方法,根据不同的冶炼条件砌筑不同的砖。上部采用的砖型有高砖,下部采用的是全碳砖炉底。冷却方式:炉身局部采用板壁结合的方式炉腰局部采用凸台冷却壁;炉缸和炉底采用光面冷却壁和水冷炉底结构。设计的热风炉采用传统改良型内燃式热风炉。蓄热式和燃烧室在同一炉壳内,中间用隔热墙隔开;采用眼睛型燃烧室。这局部同时包括热风炉各种设备和阀门的选取计算。上料系统采用的皮带机连续上料,同时增加了皮带的速度和宽度,满足高炉冶炼的要求。炉顶装料设备采用串罐式无料钟炉顶装料。喷吹系统增加了煤的数量,采用了单管路串罐式直接喷吹。煤气处理设备采用的是湿法除尘设备。所涉及的计算有高炉和热风炉尺寸的计算、高炉的物料平衡和热平衡计算以及热风炉风机的选择等。关键词:高炉;热风炉;湿法除尘;风机;无钟炉顶AbstractA blast furnace plant of million tons product annual was desigened in the in the paper according to Tangshan area condition. The horizontal layout of the whole plant is peninsula type layout.The dischargeable capacity of the BF in this design is 1982m3.among it, the BF lining adopted equalization lining method and was made of alumina brick and chayote in upper of BF and all carbon brick in the bottom of BF.The cooling methods were batten wall style in shaft, boss-cooling stave in bosh, smooth cooling stave in hearth and water-cooling stave in bottom of hearth.The air-stove was modified tradition style of internal combustion. The checker chamber and combustion chamber were in the same furnace shell and divided by heat insulation wall. And the combustion chamber was eye-style. Furthermore this part of the paper included the selection of various equipments and valves.The charging equipment used the belt machine to continuing supplying charge and the belt velocity and width were increased in order to meet the BF melting needs. The furnace roof equipment used string pot style of non-bell furnace roof. Injection system increased amount of coal and use single valve line sting pot direct injection. The gas treating system used hydro filter equipment.The computes in the paper have size of BF and air-stave, charge balance, heat balance and fan of air-stave choice, etc.Key word: blast furnace, air-stove, hydro filter, fan, non-bell furnace roof目 录摘 要IAbstractII第一局部 设计说明书1引 言2第1章 绪论31.1 概述31.2 高炉生产主要经济技术指标31.3 高炉冶炼现状及其开展41.4 本设计采用的新技术5第2章 高炉车间设计62.1 厂址的选择62.2 高炉炼铁车间平面布置应遵循的原那么72.3 车间平面布置形式7第3章 高炉本体设计83.1 高炉数目及总容积确实定83.2 炉型设计83.3 参数113.4 炉衬设计及高炉根底113.4.1 高炉炉基的形状及材质113.4.2高炉炉底和各段炉衬的选择、设计和砌筑13高炉冷却及钢结构1414153.5.3高炉供水量、水压确实定15171717第4章 原料系统194.1 焦矿槽容积确实定194.1.1 贮矿槽和附矿槽的布置、容积及数目确实定194.1.2 焦矿槽的布置、容积及数目确实定204.2 槽上、槽下设备及参数确实定204.2.1 槽上设备204.2.2 槽下设备及参数选择204.3 皮带上料机能力确实定20第5章 送风系统225.1 高炉鼓风机的选择22225.1.2 鼓风机风量225.1.3 高炉鼓风压力225.1.4 鼓风机的选择235.2 热风炉235.2.1 热风炉座数确实定235.2.2 热风炉工艺布置235.2.3 热风炉型式确实定235.2.4 热风炉主要尺寸的计算235.2.5 热风炉设备265.2.6 热风炉管道及阀门26第6章 炉顶设备286.1 炉顶根本结构:286.2 布料方式286.3 根本参数的计算29第7章 煤气处理系统307.1 荒煤气管道303030317.2 除尘系统的选择和主要设备尺寸确实定317.2.1 粗除尘装置317.2.2 半精细除尘装置327.2.3 精细除尘装置327.2.4 布袋除尘器327.2.5 附属设备32第8章 渣铁处理系统348.1 风口平台及出铁场348.2 炉渣处理设备348.3 铁水处理设备348.3.1 铁水罐车358.3.2 铸铁机358.3.3 铁水炉外脱硫设备358.4 铁沟流咀布置358.4.1 渣铁沟的设计358.4.2 流咀的设计368.5 炉前设备的选择368.5.1 开铁口机368.5.2 堵铁口泥炮368.5.3 堵渣机368.5.4 换风口机368.5.5 炉前吊车36第9章 高炉喷吹煤粉系统379.1 煤粉制备系统379.1.1 煤粉制备工艺379.1.2 煤粉喷吹系统389.2 喷吹工艺流程40第二局部 物料平衡及热平衡计算41第10章 原始条件421.1 原燃料条件4242第11章 工艺计算442.1 配料计算44442.1.2预定铁水成分(%)442.1.3 原燃料的消耗4445462.2 物料平衡462.2.1 风量的计算462.2.2 炉顶煤气成分的计算462.2.3 物料平衡表的编制482.3 热平衡计算482.3.1 热收入的计算482.3.2 热支出的计算482.3.3 热平衡表的编制50结 论52参考文献53致 谢54第一局部 设计说明书引 言进入21世纪,国际钢铁工业的共同的时代命题是市场竞争力和可持续开展问题。在走新型工业化道路,落实科学开展观和建设资源节约环境友好型社会的时代背景下,提高质量、经济效益,降低资源、能源消耗,减轻地球环境负荷,走绿色化道路,实现可持续开展,将是我国钢铁工业今后巨大的开展空间。以较少的能源、资源消耗,合理的钢产量规模,高效的产品,以及较低的地球环境负荷支持我国的工业化过程是我国钢铁工业的历史责任。钢铁工业是国民经济的重要根底产业之一,“对于经济竞争力和国家平安都是至关重要的,是“国家的经济命脉。21世纪,钢铁工业是“很有魅力的工业,是世界上最高产、高效和技术先进的工业之一,钢铁产业是一个强大的、充满活力的经济行业,并以环境友好、本钱经济的方式为用户提供高质量的钢材。21世纪以来,国际钢铁工业的第二个高速增长期是由开展中国家,特别是中国钢铁工业崛起推动的。本世纪初的5年,世界钢产量增加亿吨,其中中国增加量占78.6%。中国钢铁工业的开展经历了曲折、徘徊和崛起的历史进程。2005年中国粗钢产量到达35239万吨,2007年中国粗钢产量又进一步跃升到亿吨,约占世界粗钢产量的35%。这一历史进程是艰辛而丰富多彩的。在21世纪,我国高炉炼铁将继续在结构调整中开展。高炉结构调整不能简单的概括为大型化,应该根据企业生产规模、资源条件来确定高炉炉容。从目前我国的实际情况来看,高炉的座数必须大大减少,平均炉容大型化是必然趋势。高炉大型化,有利于提高劳动生产率、便于生产组织和管理,提高铁水质量,有利于减少热量损失、降低能耗、减少污染点,是污染容易集中管理,有利于环境保护。所有这一切都有利于降低钢厂的生产本钱,提高企业的市场竞争力。根据唐山地区的燃料条件和唐钢的工艺以及环境条件,设计275万吨的炼铁生产车间,对唐山及各个地区的许多炼铁厂都具有比拟的借鉴作用。因此,本设计的深度和广度都是比拟适宜的。第1章 绪 论 概述高炉炼铁是获得生铁的主要手段,是钢铁冶金过程中最重要的环节之一,在国民经济建设中起着举足轻重的作用。高炉炼铁是以铁矿石天然富矿、烧结矿、球团矿为原料,以焦炭、煤粉、重油、天然气等为燃料和复原剂,以石灰石等为熔剂,在高炉内通过炉料燃烧、氧化物中铁元素的复原以及非铁氧化物造渣等一系列复杂的物理化学过程获得生铁。其主要副产品有高炉炉渣和高炉煤气。为实现优质、低耗、高产和延长炉龄,高炉本体结构和辅助系统必须满足耐高温,耐高压,耐腐蚀,密封性好,工作可靠,寿命长,产品优质,产量高,消耗低等要求。现代化高炉已成为高度机械化、自动化和大型化的一种综合生产装置。高炉车间的设计也必须满足高炉生产的经济技术指标,以期到达最正确的生产效益。1.2 高炉生产主要经济技术指标1高炉有效容积利用系数():高炉有效容积利用系数即每昼夜生铁的产量与高炉有效容积之比,即每昼夜1m³有效容积的生铁产量。可用下式表示: 式中 -高炉有效容积利用系数,吨铁/米3·昼夜; -高炉每昼夜的生铁产量,吨铁/昼夜;-高炉有效容积,米3。是高炉冶炼的一个重要指标,本设计 =2.0 2焦比:焦比即每昼夜焦炭消耗量与每昼夜生铁产量之比,即冶炼每吨生铁消耗焦炭量。可用下式表示: 式中 -高炉焦比,千克/吨铁; -高炉每昼夜的生铁产量,吨铁/昼夜;-高炉每昼夜消耗焦炭量,千克/昼夜。焦比可根据设计采用的原燃料、风温、设备、操作等条件与实际生产情况进行全面分析比拟和计算确定。当高炉采用喷吹燃料时,计算时必须考虑喷吹物的焦炭置换量。 本设计的焦比为350 。3 煤比:冶炼每吨生铁消耗的煤粉为煤比。本设计煤比为170 。4 冶炼强度和燃烧强度:高炉冶炼强度是每昼夜1有效容积燃烧的焦炭量,即高炉每昼夜焦炭消耗量与的比值,本设计 =0.95 。燃烧强度既每小时每炉缸截面积所燃烧的焦炭数量。本设计 5 。5 休风率:休风率即因故休风的休风时间占作业时间的百分数。休风率反映高炉设备维护的水平,先进高炉的休风率小于1%,实践证明,休风率降低1%,产量可提高2%。6 生铁合格率:高炉生产的生铁其化学成分符合国家规定的合格生铁占总产生铁量的百分数为生铁合格率。本设计为100%。7 高炉一代寿命:高炉从点火开炉到停炉大修之间的冶炼时间称为高炉一代寿命,即相邻两次大修之间的冶炼时间。大型高炉一代寿命为1015年。8 生铁本钱:生产1合格生铁所需消耗的所有原料、燃料、材料、水电、人工 等一切费用的总和,单位为元/1.3 高炉冶炼现状及其开展1.现状:近两年来中国生铁产量高速增长,同时高炉炼铁技术也取得了较大进步。2007年全国重点钢铁企业高炉炼铁焦比到达392kg/ t,热风温度到达1125,喷煤比到达137kg/ t,利用系数为2. 677 t/m3. d。这些指标创造出我国历史最好水平。宝钢、武钢、首钢、鞍钢等企业的大高炉生产技术进入成熟开展阶段,炼铁燃料比低于500kg/ t。但是,中国炼铁产业集中度低,炼铁企业开展不平,先进与落后共存。尚有6000多万t/年生产能力属于淘汰之列,造成中国炼铁技术开展不平衡。2.开展趋势1 炉容大型化2 生产高效化精料;高温化;高压炉顶操作;喷吹燃料与富氧鼓风;提高高炉寿命;加强二次能源回收。3高炉自动化炉顶装料自动化;热风炉操作自动化;喷煤操作自动化;炉喉煤气成分温度检测自动化。4 工业环保化含铁含碳粉尘回收利用;粉尘烟气、工业废水排放达标;减少高温直接热辐射;减少噪声污染。1.4 本设计采用的新技术1.无料钟炉顶和皮带上料,布料旋转溜槽可实现多种方式布料。2.热风炉采用锥球形,有利于拱顶气流分布和热风温度提高,隔墙间加耐热钢板防止蓄热室气体短路。3.炉前水系统采用过滤法。4.炉体冷却采用软水密闭循环系统。5.设有余热回收余压发电装置。6.设有喷吹煤粉设备。7.采用计算机自动监控系统对炼铁生产各个环节进行监控。第2章 高炉车间设计2.1 厂址的选择确定厂址要做多方案比拟,选择最正确者,厂址选择的合理与否,不仅影响建设速度和投资,也影响到投产后的产品本钱和经济效益,必须十分慎重。厂址选择应考虑以下因素:a) 要考虑工业布局,有利于经济合作;b) 合理利用地形设计工艺流程,简化工艺,减少运输量,节省投资;c) 尽可能接近原料产地及消费地点,以减少原料及产品的运输费用;d) 地质条件要好,地层下不能有开采价值的矿物,也不能是已开采区;e) 水电资源要丰富,高炉车间要求供水、供电不得间断,供电要双电源;f) 尽量少占良地;g) 厂址要位于居民区主导风向的下风向或测风向。本设计对厂址选择如下:1冶金工厂的原料和成品运输及水电的消耗量很大,厂址应选在靠近铁路接轨站,并应保证接轨的方便和防止复杂的线路建设工程。应靠近原料、燃料的基地和产品销售的地点。近水源、电源,以缩短运输距离和管线长度,以减少建厂的投资和运营费用。2厂址的面积和外形应能满足生产工艺过程的需要,把所有的建筑物、构筑物合理地布置在厂区之内,并应有一定的扩充余地,以供工厂开展之用。3厂址应位于城市和居民区主导风向的下风向,一般应有1000米以上的距离,并应与其他企业不相干扰。窝风的盆地不宜选择为工厂厂址。4厂址应靠近城市和已有的工厂,以便在生活福利和公用设施上互相协作。5厂址的地势最好是平坦的,厂址的地表应由中心向四周倾斜,以便使地面水能依自然坡度向外畅流,不需要大量的土方工程。6冶金工厂主要的建筑物、构筑物,大多需要较深的根底和地下室,在建筑房屋和构筑物时厂址的土壤不需要复杂的根底工程。地下水位尽可能低于地下建筑和构筑物根底的深度,并无侵蚀性。7厂址不受洪水及大雨的淹没,厂址最低处应该高出河流或海水涨潮的最高水位。8厂址不应位于矿床或已开采的矿坑、溶洞和土崩的地层上,不应布置在各种有机废物、化学废物、舍弃物的附近。9厂址应有较容易弃渣的低洼地带。10工厂的污水符合国家环保法规定范围的应尽量排到城市的下游或取水点的下游。11布置厂址时应充分利用地形,不占或少占农田。2.2 高炉炼铁车间平面布置应遵循的原那么本设计的车间平面布置遵循了以下原那么:1 在工艺合理,操作平安,满足生产的条件下,应尽量紧凑,并合理共用一些设备及建筑物,以求少占土地及缩短运输线、管网线的距离。2 足够运输能力,保证原料及时入厂和产品副产品及时运出。3 车间内部铁路、道路布置要畅通。4 要考虑到扩建的可能性,在可能的条件下留一座高炉的位置。在高炉大修、扩建时,施工安装作业及材料设备堆放等不得影响其他高炉正常生产。2.3 车间平面布置形式高炉炼铁车间布置形式根据铁路线的布置可以分为:一列式布置,并列式布置,岛式布置和半岛式布置。本设计车间布置形式采用半岛式布置:半岛式布置形式的高炉和热风炉列线与车间调度线交角增大到45°,因此高炉距离近,并且在高炉两侧各有三条独立的有尽头的铁水罐车停放线和一条辅助材料运输线。出铁场与铁水罐车停放线垂直,缩短了出铁场长度,设有摆动流嘴,出一次铁可放置多个铁水罐车。第3章 高炉本体设计3.1 高炉数目及总容积确实定高炉炼铁车间建设高炉的座数,既要考虑尽量增大高炉容积,又要考虑企业的煤气平衡和生铁量的均衡,所以一般根据车间规模,由两座或三座高炉组成即可。本设计选取高炉车间由两座相同容积1982的高炉组成。由高炉炼铁车间生铁年产量除以年工作日,即得出高炉炼铁车间日产量:高炉炼铁车间日产量根据高炉炼铁车间日产量和高炉有效容积利用系数可以计算出炼铁车间总容积:高炉炼铁车间总容积高炉有效容积利用系数一般直接选定。大高炉选低值左右,小高炉选高值左右。本设计为年产生铁275万吨的高炉车间,设计高炉一代寿命为10年,年作业率为95%,高炉有效利用系数为=2.0 。 定年工作日: 365×95%=347;日产量: = 确定高炉容积: 选定高炉座数为2座,利用系数 =2.0 每座高炉日产量 = = 每座高炉容积 = = 取 =19823.2 炉型设计炉缸尺寸: 1) 炉缸直径 选定冶炼强度 =0.95; 燃烧强度5) 那么 = 取 = 校核 =2 合理 2) 炉缸高度 渣口高度: = =1.64 取 风口高度: = =3.03 取 风口数目: =2×(+2)=2×(+2)=2 取=24个风口结构尺寸: 选取 那么炉缸高度 = + 死铁层厚度:选取 = 1.5m 炉腰直径,炉腹角,炉腹高度:选取 那么 =1.13×=1.13×=1 取=11选取 =810那么 = = =4.10 取h2=4校核 tan=6.154 =80.77°炉喉直径,炉喉高度: 选取 那么 =0.68×=0.68×11=7.48 取d1=7.5 选取 炉身角,炉身高度,炉腰高度:选取=840那么 = =1 取h4=17校核 tan= = =选取 6那么 =2.50×=2.50×11=28.16 取Hu=28.2求得: =-=28.2-3.5-4.0-17-2.0=1.7校核炉容: 炉缸体积 = = =2炉腹体积 = = =炉腰体积 = = =1炉身体积 =炉喉体积 = =高炉容积 = + = 误差 =9%<1%炉型设计合理,符合要求.绘制高炉炉型图:图3.1 2200高炉炉型图3.3 参数表3-1 高炉炉型尺寸参数1Vu/m3d/mmD/mmd1/mmHu/mmh0/mmh1/mmh2/mmh3/mmh4/mm1982970011000750028200150035004000170017000续h5/mmhz/mmhf/mm/°/°风口/个渣口/个A/m2Vu/AHu/D2000170030008124-7263.4 炉衬设计及高炉根底 高炉炉基的形状及材质高炉根底是高炉下部的承重结构,它的作用是将高炉全部载荷均匀地传递到地基。高炉根底由埋在地下的基座和地面上的基墩组成。(1) 对高炉根底的要求:1) 高炉根底应把高炉全部载荷均匀地传给地基,不发生沉陷和不均匀沉陷。高炉根底下沉会引起高炉钢结构变形,管路破裂;不均匀下沉将引起高炉倾斜,破坏炉顶正常布料,严重时不能正常生产。高炉总体设计,对根底的下沉量和倾斜率都有严格要求。2) 具有一定的耐热能力。一般混凝土只能在150以下工作,250便有开裂,400时失去强度,钢筋混凝土700时失去强度。过去由于没有耐热混凝土基墩和风冷炉底设施,炉底破损到一定程度后,常引起根底破坏,甚至爆炸。采用风冷和水冷炉底及耐火基墩后,可以保证高炉根底很好工作。(2) 高炉根底的形状、尺寸、材质结构高炉根底是由基墩和基座组成的。高炉根底的结构主要取决于地质条件和高炉的容积。图3.2 高炉根底基墩的作用是隔热和调节铁口标高。基墩用耐热混凝土做成。基墩的形状为圆柱体,直径尺寸与炉底相适应,并要求高度一般为,本设计为。高炉基墩一般都浇注成整体结构,并在周围设置环行钢筋以保证其强度。基墩下部的炉壳外面设有密封钢环,上部与炉壳焊接,下部浇注在基座的混凝土内。钢环与炉壳之间留100150空隙,内填充碳素材料。基墩与根底之间留有10的水平温度缝,其间填充石英砂,以抵抗形变损坏。 基座的主要作用是将上面传递来的载荷传递给地层。基座的底面积较大,以减小单位面积的地基所承受的压力。基座的直径与载荷和地基土质有关,基座用普通钢筋混凝土制成,其形状一般为正多边形,本设计选用正八边形,其对角线长为40。基座外表为带坡度的水泥沙浆层,以便于排出积水。地外表积按下式计算:其中: -总载荷, -平安系数, -地基土质允许承载能力。高炉炉底和各段炉衬的选择、设计和砌筑炉缸、炉底承受高温、高压、渣铁冲刷侵蚀和渗透作用,工作条件非常恶劣。炉缸、炉底是高炉重要局部,被侵蚀破坏程度是决定高炉大修的关键。(1) 炉底炉底承受高温、高压、渣铁冲刷侵蚀和渗透作用,工作条件十分恶劣。为了防止炭砖在烘炉和开炉时被氧化,在炭砖外表应砌一层粘土砖保护层。为吸收砌体膨胀,砌体与周围冷却壁之间应留100150缝隙,缝隙内填满碳素捣打料。炉壳的圆锥体局部的缝隙应取较大值,以便碳捣操作,保证质量,同时防止砖衬膨胀产生对炉壳的推力,防止炉壳开裂而泄漏煤气。本设计采用满铺炭砖炉底结构,它是提高炉衬寿命的一项新技术,且能提高铁水温度。炉底砖衬厚度为2800砖层为7层。炭砖砌筑在水冷管的炭捣层上。砌筑时,先以出铁口中心线为基准线,向下逐层划出每层碳砖的十字形中心线,并标注标高。每列先从该列的中心块开始逐块砌筑。同一列相邻两块碳砖之间以斜接或垂直薄缝相接。每层炭砖砌筑从中心开始,逐步砌筑其余各列,直至砌到边缘为止。砌砖有厚缝和薄缝两种连接方式,薄缝连接时,各列砖砌缝不大于 (本设计取),各列间的垂直缝和两层间的水平缝不大于本设计取2。厚缝连接时,砖缝为3545 (本设计取40),缝中以炭素料捣固。炉底水冷管的安装:安装在基墩耐热混凝土之上炉底炭捣层之中。目前,一般砌法是炭砖两端的短缝用薄缝相接;两侧的长缝用厚缝相接。也有两端短缝用厚缝而两侧长缝用薄缝相接的,这种砌法可减少厚缝的炭捣工作量。(2) 炉缸炉缸工作条件与炉底相似,而且装有铁口、风口。每天有大量的铁水流过铁口,开堵铁口有剧烈的温度波动和机械振动。风口前边是燃烧带,为高炉内温度最高的区域。为此炉缸用炭砖砌筑,风口、渣口及铁口处采用异形炭砖砌筑,炭砖砌筑为薄缝,上下层碳砖砖缝均砌在中间。炉缸炭砖砌筑以薄缝相连,上下层炭砖的砖缝均砌筑在中间。风口、渣口和铁口采用异型炭砖砌筑。砌体与冷却壁之间留有100150缝隙,本设计为150,其中填以炭质填料。第一层环砌炭砖最好能盖上三块半炉底满铺的炭砖,因此其长度一般大于400+401540。本设计取1760(3) 炉腹炉腹位于风口之上,此部位受强烈的热应力作用,不仅炉衬内外表温度高,而且由温度波动引起的热冲击、破坏力很大;同时还承受由上部落入炉缸的渣铁水和高速向上运动的高温煤气的冲刷、化学侵蚀及氧化作用,再加上炉料的压力和摩擦力及崩料时的巨大冲击力。开炉后炉腹部位的砌砖很快被侵蚀掉,靠渣皮工作,一般 砌一层厚345高铝砖,倾斜局部按每三层砖错台一次砌筑。砌砖砖缝应不大于1本设计取1,上下层砖缝和环缝均应错开。(4) 炉腰炉腰紧靠炉腹,侵蚀作用也相似。本设计采用过渡式炉腰结构,该部位砌筑一层345厚的高铝砖,砌砖紧靠冷却壁,砌砖砖缝应不大于1本设计取1,上下层砖缝和环缝均应错开。(5) 炉身炉身砌砖厚度通常为690805,目前趋于向薄的方向开展,本设计的炉衬厚度采用575,即230高铝砖+345高铝砖=575。炉身倾斜部位按3层砖错台一次砌筑。砌砖紧靠冷却壁,缝隙用炭质填料填充。(6) 炉喉本设计采用长条式炉喉钢砖,其优点是生产中不易变形、脱落,且结构稳定,拆装方便。炉喉有几十块保护板,在炉喉的刚壳上装有吊挂座,座下装有横的挡板,板之间留20的间隙,保证保护板受热膨胀时不相互碰挤。炉底冷却型式选择大型高炉炉缸直径较大,周围径向冷却壁的冷却,已缺乏以将炉底中心部位的热量散发出去,如不进行冷却那么向下侵蚀严重。目前,多数高炉炉底都采用水冷的方法,即水冷炉底。水冷管中心线以下埋置在炉基耐火混凝土基墩上外表中,中心线以上为碳素捣固层,水冷管为40×10,炉底中心部位水冷管间距200300本设计取200,边缘水冷管间距为300500本设计取300,水冷管两端伸出炉壳外50100。炉壳开孔后加垫板固定,开空处应避开炉壳折点150以上。水冷炉底结构应保证切断给水后,可排出管内积水,工作时排水口要高出水冷管水平面,保证管内充满水。高炉各部位冷却设备的选择1炉缸和炉底部位冷却设备选择炉缸和炉底选用光面冷却壁,砌与冷却壁之间留100150本设计取150的缝隙,其中填以炭质填料。光面冷却壁与炉壳之间留20的缝隙,并用稀泥浆灌满。光面冷却壁尺寸大小要考虑到制造与安装的方便,冷却壁宽度一般为7001500,厚度80120本设计取120,高度视炉壳折点而定,一般小于3000本设计取1300。安装时,同段冷却壁间直缝为20,上下段间水平缝为30,上下两段冷却壁间垂直缝应相互错开,缝间用铁质锈接料锈接严密。2炉腹、炉腰和炉身这些部位采用镶砖冷却壁冷却,冷却壁紧靠炉衬。从外形看,镶砖冷却壁一般有三种结构形式:普通型、上部带凸台型和中间带凸台型。镶砖冷却壁厚度为250350本设计取350,高度小于3000。炉腹和炉腰采用普通型镶砖冷却壁,炉腹部位冷却壁高度取1600,炉腰部位冷却壁高度取2000;炉身采用上部带凸台型镶砖冷却壁,高度2000,凸台突出长度200,肋高200。凸台冷却壁的凸台局部起到支撑上部砌砖的作用,可以取消最长层的支梁水箱,简化了冷却系统结构,减少了炉壳开孔。3炉顶:采用喷水冷却 。高炉供水量、水压确实定1供水量高炉冷却水消耗量决定于炉体热负荷,炉体热负荷是指在单位时间内炉体热量的损失量。炉体总的热负荷与炉体总的冷却水用量之间的关系,按照热平衡原理,可以用下面公式表示:式中 炉体总热损失,; 炉体总的冷却水用量,; 冷却水的比热容,; 分别为冷却水的进、出水温度平均值,。求出炉体总的热负荷后,即可求出高炉的冷却水用量。在计算炉体热负荷时,应考虑炉役后期的值比中期增加15%。本设计要求冷却水进水温度小于35,出水温度5060,各局部允许进出水温度差为:炉身上部12,炉身下部12,炉腰10,炉腹10,风口带5,炉缸3,风、渣口大套5,风、渣口二套5。 平均进、出水温差为10,冷却水的比热为4.18 。 = = 2744 本设计高炉总的冷却水用量为2744 。2供水水压有足够高的供水压力是保证高炉冷却器正常工作的根本条件。同时,为防止当冷却器烧毁时高炉内煤气不至于进入冷却系统,造成烧坏大量冷却设备,也要求供水系统压力必须大于炉内煤气压力。对炉体供水压力的要求是:供水主管在风口平台处的水压应大于;在风口区域冷却水压力应比热风压力高,其余部位冷却水压应比该处的炉内煤气静压大。一些高炉炉体供水压力见下表:表3-2 高炉炉体供水压力表部位单位高炉容积,<100255620>1000供水管风口平台处滤水器以上炉体上部炉体下部本设计炉体给水压力:供水主管,炉体中部,炉体上部。风口数目及直径由高炉炉型设计计算,取风口数目为24个。风口装置设计包括热风围管以下的短管法兰盘、鹅颈管、直管、弯管、直吹管,以及风口水套等局部。风口直径按生产实践经验而定,同相似炉容的高炉相比拟,本设计风口直径取170。风口由风口大套、二套和三套组成,是送风管路最前端的一个部件。它位于高炉炉缸上部,成一定角度探出炉壁。铁口铁口装置主要指铁口套。铁口套的作用是保护铁口处的炉壳。铁口套一般用铸钢制成,并与炉壳铆接后焊接。考虑不使应力集中,铁口套的形状,一般做成椭圆形,或四角大圆弧半径的方形。炉壳及钢结构确定一高炉钢结构炉体钢结构主要包括炉体支柱、炉顶框架、炉壳及平台结构等。(1) 炉体支柱:炉体支柱是支撑炉体及炉顶设备重要的钢结构件。炉体支柱的结构形式取决于炉体内衬结构及炉顶设备的载荷传递到炉基的方式。本设计采用大框架结构。这种结构特点是炉顶框架上的全部载荷由四根大支柱组成的大框架直接传递到炉基,炉顶法兰盘上的载荷由炉壳传递到炉基,取消了炉腰托圈,炉缸支柱及炉身支柱。(2) 炉顶框架:炉身支柱或大框架支柱上的部顶端一般都用横跨钢梁将支柱连接成整体,并在横跨钢梁上面满铺花纹钢板或普通钢板作为炉顶平台。炉顶平台是炉顶最宽敞的工作平台。炉顶框架是设置在炉顶平台上面的钢结构支撑架。它主要支撑受料漏斗、大小料钟平衡杆机构及安装大梁等。炉顶框架结构形式在A字型和门型两种,本设计选用门型结构。门型结构钢架一般为24-40厚钢板焊成或槽钢制成。二炉壳:炉壳有钢板制成, 各部位炉壳厚度的计算公式如下: , 其值见表:表3-3 炉体各部位系数部位值值本设计值,炉顶封板与炉喉50°<55°8100>55°-炉身上部区域13830炉身下部区域13830炉腰及其以下部位10700炉缸及炉底13310第4章 原料系统原料系统包括:卸料、堆料、冶炼前的准备破碎、筛分、混匀,运输到贮矿槽上;按高炉的需要配料、称量;装入料车或上料皮带,经过炉顶装料装置装入高炉等。4.1 焦矿槽容积确实定贮矿槽的容积大约能贮存1218小时的矿石,68小时的焦炭。据此设定贮矿槽的容积及焦槽的容积: 贮矿槽和附矿槽的布置、容积及数目确实定高炉炉后贮矿槽和贮焦槽是用来接受和贮存炉料的。此外,还应设置一些数目的杂矿槽,以贮存熔剂和洗炉料等。1贮矿槽结构:采用钢钢筋混凝土混合式结构形式,矿槽周壁用钢筋混凝土浇灌,底壁、支柱和轨道梁用钢板焊成。槽内加衬板,槽底板与水平面夹角50°55°。2本设计选用10个贮矿槽,槽上槽下都采用皮带运输方式。其中烧结矿、球团矿、巴西矿、石灰石的个数分别为4、2、2、2。 单个矿槽的容积为:=/10 = 取 =318 矿槽贮存能力贮存时间:×24/(1982×2.2)= 17.45 小时3矿槽参数:本设计中贮矿槽设置为单排,采用皮带机供料,贮矿槽宽度为10 。高度为12 m。矿槽总长度决定于车间的长度,后者决定于高炉中心线的距离。单个矿槽长度采用带式运输机为5 。4副矿槽设计 杂矿槽 75×2 块矿槽 100×2 焦矿槽的布置、容积及数目确实定1本设计中设四个焦槽。每个焦槽容积为: /4=, 取 焦槽贮存能力时间: ×24/(1982×2.2)=7.61小时 2另备一个100碎焦槽。4.2 槽上、槽下设备及参数确实定 槽上设备目前,槽上设备有料车上料和皮带上料两种,本设计采用皮带上

    注意事项

    本文(冶金专业炼铁厂年产175万吨高炉毕业设计.docx)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开