欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    空间曲线的曲率挠率PPT讲稿课件.ppt

    • 资源ID:1825878       资源大小:5.39MB        全文页数:41页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    空间曲线的曲率挠率PPT讲稿课件.ppt

    空间曲线的曲率挠率课件,定义:如果曲线的参数表示式 或 是 阶连续可微的函数,则把这类曲线称为 类曲线。当 时, 类曲线又称为光滑曲线。,自然参数:我们知道曲线有不同的参数表示,能否找一种参数使研究曲线很方便呢?回答是肯定的这就是以弧长s为参数(自然参数) 对于光滑曲线1、 的参数是自然参数的充要条件是2、弧长参数优越性:3、弧长作参数是可以做到的:由于 则s(t)是t的严格单调函数,存在反函数t=t(s), 代入有 4、对于,1.曲线的自然参数,例:圆的参数化为 r(t) (a cost , a sint ) , tR ,其中常数 a 0 , 试将参数化为自然参数。,解:,给出 类曲线 得一单位向量 , 称 为 曲线(C)上 P 点的单位切向量。 称 为曲线在 P 点的主法向量, 它垂直于单位切向量。 称 为曲线在 P 点的次法向量。把两两正交的单位向量 称为曲线在 P 点的伏雷内(Frenet)标架。,2.空间曲线的基本三棱形、伏雷内标架,3)由任意两个基本向量所确定的平面 分别叫做:密切平面:法平面:从切平面:而由三个基本向量和上面三个平面所构成的图形叫做曲线的基本三棱形。,2) 对于曲线(C)的一般参数表示 有,定义 过空间曲线上 P 点的切线和 P 点邻近一点 Q 可作一平面 ,当 Q 点沿曲线趋于 P 时,平面 的极限位置 称为曲线在 P 点的密切平面。,关于密切平面,对于 类的曲线上任一正常点处的密切平面是最贴近于曲线的切平面。密切平面以 为法向。,密切平面的方程 给出 类的曲线(C): 有因为向量 和 都在平面 上,所以它们的 线性组合 也在平面 上。两边取极限得 在极限平面上,即 P 点的密切平面上,因此由于 ,这个向量就可以作为密切平面的一个法向量。密切平面方程为,表示 P 点的密切平面上任一点的向径, 则上式表示为如果曲线用一般参数t 表示,则将上式中的撇改成点。,平面曲线的密切平面就是曲线所在的平面。,例 求圆柱螺线r=a cos t, a sin t, bt在任一点的密切平面,3.空间曲线的曲率,挠率,设空间曲线(C)为 的,且以 s 为参数。 1)曲率 定义(C)在 P 点的曲率为,曲率的几何意义是曲线的切向量对于弧长的旋转速度。曲率越大,曲线的弯曲程度就越大,因此它反映了曲线的弯曲程度。,例. 求半径为R 的圆上任意点处的曲率 .,解: 如图所示 ,可见: R 愈小, 则K 愈大 , 圆弧弯曲得愈厉害 ;,R 愈大, 则K 愈小 , 圆弧弯曲得愈小 .,例: 空间曲线, 为直线的充要条件是曲率证明:若为直线 其中 都是常向量, 并且 ,则 反之, 若 , 则 于是 所以该曲线是直线.,2)挠率 与曲率类似有,定义 曲线(C)在 P 点的挠率为挠率的绝对值是曲线的次法向量对于弧长的旋转速度。,挠率恒为零的曲线是平面曲线,3)曲率和挠率的一般参数表示式,给出 类的曲线(C):所以因此由此得到曲率的一般参数的表示式,由,可得挠率公式为,有曲率近似计算公式,则曲率计算公式为,二阶可导,设曲线弧,说明:,若曲线由参数方程,给出, 则,若曲线方程为,则,若曲线由参数方程,给出, 则,4)密切园(曲率园),过曲线(C)上一点 P 的主法线的正侧取线段 PC,使 PC 的长为1/k。以C 为园心,以1/k为半径在密切平面上确定一个园,这个园称为曲线在 P 点的密切园或曲率园,园的中心叫曲率中心,园的半径叫曲率半径。,曲率中心轨迹设对应Y=(x,y,z),则有,容易证明C在P点与曲率圆相切,且在P点的曲率相同,在点P 处曲率圆与曲线有下列密切关系:,(1) 有公切线;,(2) 凹向一致;,(3) 曲率相同 .,例 求圆柱螺线r=a cos t, a sin t, bt(a0, b0均为常数) 的曲率、挠率、曲率中心和曲率圆. 解 =-a sin t, a cos t, b, =-a cos t, -a sin t, 0, =a sin t, -a cos t, 0.于是 = =所以圆柱螺线的曲率和挠率都是常数.,. 故曲率中心的半径向量为可以求出密切平面为于是曲率圆为,设曲线方程为,且,求曲线上点M 处的,曲率半径及曲率中心,设点M 处的曲率圆方程为,故曲率半径公式为,满足方程组,的坐标公式 .,机动 目录 上页 下页 返回 结束,由此可得曲率中心公式,例. 设一工件内表面的截痕为一椭圆, 现要用砂轮磨,削其内表面 , 问选择多大的砂轮比较合适?,解: 设椭圆方程为,可知, 椭圆在,处曲率最大 ,即曲率半径最小, 且为,显然, 砂轮半径不超过,时, 才不会产生过量磨损 ,或有的地方磨不到的问题.,例3 目录 上页 下页 返回 结束,当点 M (x , y) 沿曲线C,移动时,的轨迹 G 称为曲线 C 的渐屈线 ,相应的曲率中心,曲率中心公式可看成渐,曲线 C 称为曲线 G 的渐伸线 .,屈线的参数方程(参数为x).,6)曲线的渐屈线、渐近线,( 仍为摆线 ),例. 求摆线,的渐屈线方程 .,解:,代入曲率中心公式 ,得,摆线 目录 上页 下页 返回 结束,微分几何Differential Geometry,坐标系、微积分应用于几何学,产生了微分几何研究如何描述空间中一般的曲线和曲面的形状参数变换下几何不变量:曲线弧长、曲率、挠率;曲面第一基本形式、第二基本形式等,微积分,拓扑学,高等代数与解析几何知识的综合运用,突出的数学家,Euler(1707-1783), Morge(1746-1818)引进曲线曲面参数表示法曲率能够由主曲率表示,Euler公式Gauss(1777-1855)曲面的第一、二基本形式、Gauss曲率,内蕴几何学Intrinsic differential geometryRiemann(1826-1866)度量Measure、流形Manifold、黎曼几何学;弯曲空间Klein(1849-1925)变换群Cartan(1869-1951)活动标架,纤维丛及其联络,突出的数学家,陈省身开创并领导着整体微分几何、“陈省身示性类”丘成桐“卡拉比猜想”,“微分几何中偏微分方程作用”,“完备黎曼流形上调和函数”,杨振宁先生对几何学的概括天衣岂无缝,匠心剪接成。浑然归一体,广邃妙绝伦。造化爱几何,四力纤维能。千古寸心事,欧高黎嘉陈。,微分几何的应用,理论物理广义相对论将物理量解释为几何量。具体的说,空间和时间结合在一起由一个流形描述:不同的参照系给出不同的局部坐标;不同参照系之间的关系即是坐标变换。时空流形的度量由所谓Lorentz度量给出,象Riemann几何一样计算出曲率等几何量。Einstein方程说:时空的物理量(能量动量张量)等于时空的几何量(Ricci曲率张量)。,微分几何的应用,计算几何、图形学曲线曲面设计离散微分几何网格曲面计算机视觉基于流形的学习方法拓扑学,代数拓扑和微分拓扑与之紧密相连代数几何,代数方程(组)的零点集,计算机视觉Computer Vision,数字几何,1D,2D,2D,3D,数字几何媒体:拓扑结构复杂;采样非均匀;没有通用标准,数字几何媒体(Digital geometry media)正成为继声音、图像和视频之后的下一轮数字媒体浪潮。,几何造型Shape modeling,Surface reconstruction(static) From CT or optical images, raw point data, Data repairing, registration, resampling, smoothing,Point cloud mesh NURBS textureNo connection connected parametric,meshing,paramerization,几何造型Shape modeling,Dynamic modelingFeature driven morphingParametric modelingPhysical constrained animation,网格参数化及共形映射,网格曲面上的离散微分几何算子,曲面磨光,对两个主方向进行不同处理,流形学习Manifold learning,基于几何不变量的识别和检索,

    注意事项

    本文(空间曲线的曲率挠率PPT讲稿课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备2025010119号-1

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开