欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载
     

    第7章 数字带通传输系统课件.ppt

    • 资源ID:1782763       资源大小:3.18MB        全文页数:136页
    • 资源格式: PPT        下载积分:16金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要16金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第7章 数字带通传输系统课件.ppt

    第7章 数字带通传输系统,本章教学目的与要求:1、掌握三种基本二进制数字频带调制方式(2ASK、 2FSK、2PSK/2DPSK)的调制和解调原理、带宽。2、掌握三种方式的误码率信噪比公式,会计算。3、了解多进制数字频带调制系统原理和抗噪性。,1,PPT课件,主要外语词汇,振幅键控 ASK(Amplitude Shift Keying) 通断键控 OOK(On-Off Keying)频移键控 FSK(Frequency Shift Keying) 相移键控 PSK(Phase Shift Keying)差分(相对)相移键控DPSK(Differential Phase Shift Keying)正交相移键控QPSK(Quadriphase Shift Keying)M进制振幅键控 MASK(M-ary Amplitude Shift Keying),2,PPT课件,作业,P235 1,2,3,7,11, 17(二进制信息为10110001),3,PPT课件,本章主要内容,7.1二进制数字调制原理 7.2二进制数字调制系统的抗噪声性能7.3 二进制数字调制系统的性能比较7.4多进制数字调制原理及抗噪声性能,4,PPT课件,频率很低的电信号,如电话信号的频率范围在3003400Hz,基带信号可以直接通过架空明线、电缆等有线信道传输,但不可能在无线信道直接传输。 即使可以在有线信道传输,但一对线路上只能传输一路信号,对信道的利用是很不经济的。,概述:基带信号,5,PPT课件,概述:调制和解调,原始信号,调制:发送端把基带信号频谱搬移到给定信道通带内的过程,解调:在接收端把已搬到给定信道通带内的频谱还原为基带信号的过程,6,PPT课件,概述:调制的基本特征和分类,7,PPT课件,引言,一、什么是数字信号的带通传输?数字信号的带通传输又称数字频带传输(数字载波传输),是将数字基带信号的信息转载到高频载波上去的处理过程。,数字带通传输系统(数字频带传输系统),8,PPT课件,二、为什么要进行数字频带传输?,1、基带传输损耗大、易误码。 基带传输一般用于局域网,较少用于长途传输。2、便于利用各种模拟信道(带通信道)资源传输数字信号。,9,PPT课件,三、怎样进行数字频带传输? (数字信号的调制),高频载波C(t)=ACOS(c t + 0 )为等幅单频余弦电波。需要让载波携带的数字基带信号信息,为有限个离散值。可以携带数字基带信号信息的参量有幅度、频率和相位。因此可设计出三种调制方案:1、让载波幅度A 按数字信号的代码变化 数字调幅;2、让载波频率c按数字信号的代码变化 数字调频;3、让载波相位 0 按数字信号的代码变化 数字调相。,10,PPT课件,调制信号为二进制数字信号时,这种调制称为二进制数字调制。在二进制数字调制中,载波的幅度、频率或相位只有两种变化状态。,11,PPT课件, 7.1二进制数字调制原理,一、二进制振幅键控,数字振幅调制又称振幅键控,记作ASK(Amplitude shift keying),二进制振幅键控记作2ASK。,1、时域表示及波形2ASK是利用代表数字信息(“0”或“1”)的基带矩形脉冲去键控一个连续的正弦型载波的振幅,使载波时断时续地输出。有载波输出时表示发送“1”,无载波输出时表示发送“0”。,12,PPT课件,特点:“1”码期间有等幅正弦波输出,相当于开关开通; “0”码期间无输出,相当于开关切断。因此,数字调幅又称为开关键控(通断键控),记作OOK(On Off Keying)。,13,PPT课件,数字基带信号 ,式中g(t)是宽度为Ts、高度为A的矩形脉冲。a n为数字序列a n的第n个码元的电平值。,载波是单频正弦波 c(t)=COS(ct+ 0 )已调波,类似于模拟信号调幅,现在是用数字基带信号去调幅,调制信号是单极性不归零码。,14,PPT课件,2、调制方法:,15,PPT课件,3、2ASK信号的解调,与模拟调制系统一样,数字调制系统的解调也有相干和非相干两种方式: 相干解调采用相干波相乘的方法,主要用于线性调制信号,如ASK和PSK;非相干解调采用包络检波的方法,主要用于FSK,也可用于ASK。,16,PPT课件,2ASK非相干解调流程框图,(1)非相干解调(包络检波法),17,PPT课件,2ASK非相干解调各步波形,18,PPT课件,(2)相干解调(同步检测法),2ASK相干解调流程框图与模拟系统解调的不同点仅仅在于多了一个抽样判决。,19,PPT课件,2ASK相干解调各步波形,20,PPT课件,相乘器输出为,经LPF,滤除 2C 频率分量,x(t) = s(t) / 2 。 对x(t) 进行抽样,取得抽样值 x 。当x 判决门限,判为“1”码。,e2ASK=s(t)cosct,21,PPT课件,用SYSTEMVIEW仿真2ASK调制解调系统,22,PPT课件,23,PPT课件,24,PPT课件,4、2ASK信号的功率谱和带宽,2ASK是单极性不归零码与载波相乘所得。我们知道,当信号乘以 cosc t 后,其频谱为线性搬移:,其功率谱密度为:,25,PPT课件,基带信号(单极性不归零码)功率谱:,2ASK信号功率谱:,26,PPT课件,27,PPT课件,结论: (1) 2ASK信号的功率谱是信号s(t) 功率谱的线性搬移,属线性调制;(2) 2ASK信号的功率谱包含连续谱和离散谱两部分;(3) 2ASK信号的带宽是基带信号带宽的两倍。有效带宽取第一零点处带宽。基带带宽Bm = fs=RB2ASK带宽则为B2ASK= 2Bm = 2fs= 2/Ts=2RB2ASK信号频带利用率 =RB / B2ASK=RB / 2 RB =1/2(Baud / Hz),28,PPT课件,例1,已知某OOK系统的码元传输速率为103B,所用的载波信号为Acos(4106t)。(1)设所传送的数字信息为011001,试画出相应的OOK信号波形示意图。(2)求OOK信号的第一零点带宽。,29,PPT课件,二、二进制数字频移键控,1、时域表示及波形,数字频率调制又称频移键控,记作FSK( Frequency shift keying ),二进制频移键控记作2FSK。,2FSK系统是利用二进制数字基带信号控制载波频率进行频谱变换的过程。,30,PPT课件,它相当于载波在两种不同频率之间进行切换,故称频移键控 (FSK Frequency Shift Keying)。,二进制基带信号只有两种代码,所以调频时,载波频率只能被置于两种频率,即:,即用频率为f1的载波代表“1”码,用频率为f2的载波代表“0”码,或相反。,31,PPT课件,载波在两种不同频率之间进行切换 生成2FSK信号的波形,e2FSK(t),32,PPT课件,33,PPT课件,相位连续和相位不连续,这种键控切换方式,只要码元间隔时间Ts一到,载波立即发生切换,造成s2FSK(t)波形不连续,称之为相位不连续的FSK调制。 为了波形连续,又发明了相位连续的FSK调制。首先,两个不同频率的载波应来自同一振荡源(晶振),由不同的分频倍程所得;其次,还要恰当选择1和 2 ,使一个码元时段产生的相移之差为2的整数倍,即 (1 - 2 ) Ts = 2n。 (f1-f2=nfs),34,PPT课件,另一方面,2FSK调制信号也可以看作两个2ASK调制信号的叠加:,35,PPT课件,36,PPT课件,2、调制方法:,(a)模拟调频法,(b)频率键控法,37,PPT课件,3、2FSK信号的解调 (1) 过零检测法(属非相干解调),过零检测法原理框图和各点时间波形,38,PPT课件,(2) 差分检波法(属相干解调),设接收的2FSK信号为:式中an=0时取“+”号, an=1时取“-”号。经延时后变为:,39,PPT课件,二者相乘为:经低通滤波后为:调节延时,使在频偏较小时:于是,由正负号就可判定:负值判为“0” ;正值判为“1”,40,PPT课件,2FSK包络检波法解调框图,(3) 包络检波法(属非相干解调):,41,PPT课件,抽样值V2,抽样值V1,42,PPT课件,(4) 相干解调法(同步检波),43,PPT课件,4、2FSK信号的功率谱和带宽,2FSK信号可以看作两个2ASK信号的合成:,两者恰好互补,没有重复出现的时段。因此,2FSK信号功率谱密度可看作两个2ASK信号功率谱密度的叠加(信源等概):,44,PPT课件,因此,2FSK信号带宽为 B=|f2-f1|+2fs,主要取决于两中心频率之差。以fs(基带信号带宽)为单位来度量时,可定义 h=|f2-f1| / fs 叫调制指数,则 B= (h +2) fs。,45,PPT课件,我们希望2FSK信号占用的频带窄一点,也就是h 小一点,但是h 太小了,两个主峰交迭,将来难以解调(无法分开),下图示出不同的h 值的交迭状况。实验发现,取 h = 3 5 是适宜的,这时两主峰之间至少相距3个fs,由此可知, BFSK= (5 7) fs。,不同h值对FSK功率谱的交迭情况,46,PPT课件,例2,设某 2FSK 调制系统的码元传输速率为 1000 波特,已调信号的载频为 1000Hz或2000Hz。 (1)若发送数字信息为 0 1 1 0 1 0,试画出相应的2FSK 信号波形; (2)试讨论这时的2FSK 信号应选择怎样的解调器解调? (3)若发送数字信息是等可能的,试画出它的功率谱密度草图。,47,PPT课件,三、二进制相移键控,1、2PSK信号一般原理与调制方法,用载波的两种相位(0和)去对应基带信号的“0” 与 “1”两种码元。因此二元数字调相就是让载波在两种相位间切换,故称相移键控。,数字相位调制又称相移键控,记作PSK( Phase shift keying ),二进制相移键控记作2PSK。,48,PPT课件,载波在两种不同相位之间进行切换生成2PSK信号(数字键控法),例如,用初始相位 0 表示“0”码, 初始相位表示“1”码。,49,PPT课件,用双极性不归零基带信号进行调幅生成2PSK信号(模拟调制法),2PSK还可以看作双极性不归零码基带信号的数字调幅,即基带信号 与载波 cosc t 的乘积。,50,PPT课件,2、2PSK信号的解调(相干解调),51,PPT课件,相干解调需要一个与接收的2PSK信号同频同相的本地载波,此载波应由收端的载波提取电路提取。这里出现一个问题:接收到的2PSK信号中含有两种载波相位,本地载波究竟与哪个同步?这从接收到的2PSK信号中是无法决定的。并且若载波提取不完善,会存在相位偏差。这样,若载波同步错了,那么解调后所有的“1”码都变成了“0”码,所有的“0”码都变成了“1”码,极性完全相反,形成“1”和 “0”的倒置,这个问题称“倒”现象( 0模糊/反相工作)。这是2PSK信号采用相干解调必须解决的问题。,52,PPT课件,本地载波的“倒”现象,造成判定结果完全相反:,用0相载波解调与用相载波解调的比较,53,PPT课件,四、二进制差分相移键控 2DPSK ( Differential Phase Shift Keying ),1、2DPSK调制:为了解决“倒”问题,在进行数字调相之前先进行差分编码,再对差分码进行二元数字调相,称为二元差分调相。,2DPSK调制(模拟法)流程框图,54,PPT课件,2DPSK调制(键控法)流程框图,2DPSK解决了“倒”问题,这是由于即使本地载波倒相,那么前后码元都倒相,但它们的相位差并没有变,而2DPSK正是由前后码元的相对相移表示数字信号的。,绝对码,相对码,55,PPT课件,2DPSK是利用前后相邻码元的载波相对相位变化传递数字信息,所以又称相对相移键控。假设为当前码元与前一码元的载波相位差,定义数字信息与 之间的关系为于是可以将一组二进制数字信息与其对应的2DPSK信号的载波相位关系示例如下:,56,PPT课件,相应的2DPSK信号的波形如下:上图中使用的是传号差分码,即载波的相位遇到原数字信息“1”变化,遇到“0”则不变。由此例可知,对于相同的基带信号,由于初始相位不同,2DPSK信号的相位可以不同。即2DPSK信号的相位并不直接代表基带信号,而前后码元的相对相位才决定信息符号。,57,PPT课件,数字信息与之间的关系也可定义为2DPSK信号的矢量图在B方式中,当前码元的相位相对于前一码元的相位改变 /2。因此,在相邻码元之间必定有相位突跳。在接收端检测此相位突跳就能确定每个码元的起止时刻。,58,PPT课件,2、 2DPSK解调: 2DPSK相干解调(极性比较法)加码变换法:,由于差分码是靠相邻码元的变化与否来决定“1”码和“0”码的,不论0相位还是相位,相邻码元的变化关系是一样的。所以,接收端无论用0相载波还是相载波解调,尽管得到的差分码不同,但经差分逆变换后,二者得到的结论完全相同。,2DPSK相干解调加码变换法流程框图,59,PPT课件,2DPSK 相干解调波形,原码 1 0 0 1 1 0 1 1,60,PPT课件,61,PPT课件, 2DPSK差分相干解调(相位比较法):,既然2DPSK靠相邻码元的变化来决定“1”码和“0”码,那么用相邻波形直接相乘就能得到变化与否的信息了,完全可以省去产生本地载波的复杂环节,于是设计出下图所示的相对相干解调方式:,2DPSK差分相干解调流程框图(相位比较法),62,PPT课件,63,PPT课件,设前一码元 S1(t)=ACOS(c t + 1 ) 后一码元 S2(t)=ACOS(c t + 2 )两者相乘,得S1(t) S2(t) =A2COS(1 - 2 ) + COS( 2c t + 1 + 2 )/2通过LPF,得 v(t)= A2COS(1 - 2 )/2 = A2COS( ) /2判定: = 0,v(t)=A2/2(抽样值 0),表明前后码元相同,判定为“0”码; =,v(t) = - A2/2(抽样值 0),表明前后码元不同,判定为“1”码;,64,PPT课件,从2PSK信号和2DPSK信号的波形来说,都可等效为双极性不归零基带信号的幅度调制,表达式相同,e2PSK(t)=s(t)cosct 。不同在于2DPSK信号中的s(t)为由2PSK信号的基带信号变换而来的差分码数字信号。所以,2PSK信号与2DPSK信号功率谱 密度相同。,3、 2PSK信号和2DPSK信号的功率谱和带宽,65,PPT课件,乘以余弦调制后2PSK(2DPSK)信号功率谱密度为(信源等概):,双极性不归零码(等概)的功率谱为:,2PSK(2DPSK)信号功率谱密度为(信源不等概):,66,PPT课件,除了没有冲激项之外,功率谱与P2ASK(f)完全相同。因此2PSK信号和2DPSK信号的带宽仍然是基带带宽的两倍: B2PSK= B2DPSK= B2ASK= 2fs= 2/Ts=2RB,67,PPT课件,例3,假设在某 2DPSK 系统中,载波频率为 2400 Hz,码元速率为 1200波特,已知 相对码序列为1 1 0 0 0 1 0 1 1 1 。 (1)试画出2DPSK信号波形; (2)若采用差分相干解调法接收该信号时,试画出解调系统的各点波形; (3) 若发送信息符号 0 和 1 的概率分别为 0.6 和 0.4,试求 2DPSK 信号的功率谱密度。,68,PPT课件,(1) (2)已知Ts=2Tc,2DPSK差分相干解调流程框图,69,PPT课件,(3) 若发送信息符号 0 和 1 的概率分别为 0.6 和 0.4,试求 2DPSK 信号的功率谱密度。,p=0.4,70,PPT课件,例4,7-6 设发送的绝对码序列为0110110,采用 2DPSK 方式传输。已知码元速率为 2400波特,载波频率为 2400 Hz。 (1)试构成一种2DPSK信号调制器原理框图; (2)若采用相干解调码反变换器方式进行解调,试画出解调系统的各点时间波形; (3)若采用差分相干解调法接收该信号时,试画出解调系统的各点波形。,71,PPT课件,绘制二进制数字频带调制信号波形示意图。,例5,72,PPT课件, 7.2二进制数字调制系统的抗噪声性能,一、2ASK系统的抗噪声性能:,接收端收到的2ASK信号为,73,PPT课件,信道噪声为高斯白噪声,经BPF后形成窄带高斯白噪声:,BPF输出是2ASK信号和窄带高斯白噪声的叠加,在一个码元周期Ts内:,74,PPT课件,1、相干解调时2ASK系统误码率,y(t)与相干载波cosct 相乘后的波形z(t)为z(t)= y(t)cosct =a+nc(t)cos2ct - ns(t)sinctcosct,发送“1”码 nc(t) cos2ct - ns(t) sinct cosct,发送“0”码 = a+nc(t) + a+nc(t) cos2ct-ns(t) sin2ct / 2,发送“1”码 nc(t)+nc(t) cos2ct-ns(t) sin2ct / 2,发送“0”码,75,PPT课件,z(t)经LPF后,在抽样判决器输入端得到:,x(t)值的一维概率密度为:,设b为判决门限电平值(阈值电平),判决规则为: xb ,判为“1”码 xb ,判为“0”码,76,PPT课件,P x b | 0 =P(1| 0)表示发出“0”码而错判为“1”码的概率。总误码率为 Pe= P(1) P( 0 | 1 ) + P(0) P( 1 | 0 ) = P( 0 | 1 ) + P( 1 | 0 ) / 2 (信源等概),77,PPT课件,由概率密度分布图不难看出,最佳判决门限为:b*= a / 2,此时误码率(阴影面积)最小。此时, P( 0 | 1 ) = P( 1 | 0 ) ,则,78,PPT课件,误差函数补误差函数,则误码率为,解调器输入端信噪比为(b*= a / 2),则,2ASK系统相干解调时误码率:,当信噪比远大于1时,上式近似为:,(P198 7.2-19),79,PPT课件,2、非相干解调(包络检波)时2ASK系统误码率,BPF输出是2ASK信号和窄带高斯白噪声的叠加,在一个码元周期Ts内:,80,PPT课件,经包络检波器检测,输出包络信号:发“1”时,包络是窄带高斯噪声加正弦波的包络,一维概率密度函数服从(广义瑞利分布)莱斯分布: (P55,3.6-8)I0(x)为零阶修正贝赛尔函数。发“0”时,包络是窄带高斯噪声的包络,一维概率密度函数服从瑞利分布: (P53,3.5-20),81,PPT课件,设b为判决门限电平值(阈值电平),判决规则为: Vb ,判为“1”码Vb ,判为“0”码,总误码率为 Pe= P(1) P( 0 | 1 ) + P(0) P( 1 | 0 ) = P( 0 | 1 ) + P( 1 | 0 ) / 2 (信源等概),由概率密度分布图不难看出,最佳判决门限b*应取在两曲线交点的横坐标处,才能使误码率(阴影面积)最小。,82,PPT课件,此时有 f1 ( b*)=f0 ( b*)可得,发“1”时,当信噪比= (a2/2n2)1的大信噪比情况下,有,最佳判决门限为:b*= a / 2,误码率为,83,PPT课件,前项为 后项为,解调器输入端信噪比为(b*= a / 2),则,前项为 后项为,84,PPT课件,2ASK系统非相干解调时误码率,当信噪比远大于1时,上式近似为:,将上式和同步检测法(即相干解调)的误码率公式相比较可以看出:在相同的信噪比条件下,同步检测法的抗噪声性能优于包络检波法,但在大信噪比时,两者性能相差不大。然而,包络检波法不需要相干载波,因而设备比较简单。另外,包络检波法存在门限效应,同步检测法无门限效应。,(P200 7.2-38),(P200 7.2-37),85,PPT课件,设有一2ASK信号传输系统,其码元速率为 RB = 4.8 106波特,发“1”和发“0”的概率相等,接收端分别采用同步检测法和包络检波法解调。已知接收端输入信号的幅度a = 1 mV,信道中加性高斯白噪声的单边功率谱密度n0 = 2 10-15 W/Hz。试求 (1) 同步检测法解调时系统的误码率; (2) 包络检波法解调时系统的误码率。【解】根据2ASK信号的频谱分析可知,2ASK信号所需的传输带宽近似为码元速率的两倍,所以接收端带通滤波器带宽为带通滤波器输出噪声平均功率为,例6(P200例7-1),86,PPT课件,信噪比为(1) 同步检测法解调时系统的误码率为(2)包络检波法解调时系统的误码率为,可见,在大信噪比的情况下,包络检波法解调性能接近同步检测法解调性能。,87,PPT课件,例7,P2357-8 若采用OOK方式传送二进制数字信息,已知码元传输速率 RB = 2106B ,接收端解调器输入信号的振幅 a= 40V ,信道加性噪声为高斯白噪声,且其单边功率谱密度n0 = 610 -18 W/Hz,试求: (1)非相干接收时,系统的误比特率; (2)相干接收时,系统的误比特率。,88,PPT课件,二、二进制频移键控(2FSK)系统的抗噪声性能,89,PPT课件,采用包络检波时2FSK系统的总误码率为 (P205 7.2-64),结论:将2FSK包络检波和同步检波时系统的误码率公式比较可见,在大信噪比条件下,2FSK信号包络检波时的系统性能与同步检测时的性能相差不大,但同步检测法的设备却复杂得多。因此,在满足信噪比要求的场合,多采用包络检波法 。,采用同步检测时2FSK系统的总误码率为 (P203 7.2-54)在大信噪比条件下,上式可以近似表示为 (P203 7.2-55),90,PPT课件,采用2FSK方式在等效带宽为2400Hz的传输信道上传输二进制数字。2FSK信号的频率分别为 f1 = 980 Hz,f2 = 1580 Hz,码元速率RB = 300 B。接收端输入(即信道输出端)的信噪比为6dB。试求:(1)2FSK信号的带宽;(2)包络检波法解调时系统的误码率;(3)同步检测法解调时系统的误码率。【解】(1)根据式(7.1-22),该2FSK信号的带宽为(2)由于误码率取决于带通滤波器输出端的信噪比。由于FSK接收系统中上、下支路带通滤波器的带宽近似为,例8(P205例7-2),91,PPT课件,它仅是信道等效带宽(2400Hz)的1/4,故噪声功率也减小了1/4,因而带通滤波器输出端的信噪比比输入信噪比提高了4倍。又由于接收端输入信噪比为6dB,即4倍,故带通滤波器输出端的信噪比应为将此信噪比值代入误码率公式,可得包络检波法解调时系统的误码率(3)同理可得同步检测法解调时系统的误码率,92,PPT课件,三、2PSK和2DPSK系统的抗噪声性能,2PSK信号相干解调时系统的总误码率为 (P207 7.2-72)在大信噪比条件下,上式可以近似表示为 (P207 7.2-73),93,PPT课件,2DPSK信号相干解调时系统的总误码率为 (P208 7.2-77/80)在大信噪比条件下,上式可以近似表示为 (P208 7.2-81),2DPSK信号差分相干解调时系统的总误码率为 (P210 7.2-96),94,PPT课件,假设采用2DPSK方式在微波线路上传送二进制数字信息。已知码元速率RB = 106 B,信道中加性高斯白噪声的单边功率谱密度n0 = 2 10-10 W/Hz。 今要求误码率不大于10-4。试求(1)采用差分相干解调时,接收机输入端所需的信号功率;(2)采用相干解调-码反变换时,接收机输入端所需的信号功率。【解】(1)接收端带通滤波器的带宽为其输出的噪声功率为所以,2DPSK采用差分相干接收的误码率为,例9(P211例7-3),95,PPT课件,求解可得 又因为所以,接收机输入端所需的信号功率为(2)对于相干解调-码反变换的2DPSK系统,根据题意有 因而即查误差函数表,可得由r = a2 / 2n2,可得接收机输入端所需的信号功率为,96,PPT课件,7.3 二进制数字调制系统的性能比较,解调器输入端 (BPF输出端),97,PPT课件,98,PPT课件,误码率和信噪比1、信噪比增大,误码率降低;2、对于同一调制方式不同检测方法,相干检测的抗噪声性能优于非相干检测。 3、在相同误码率条件下,采用相同解调方式,所需要的信噪比要求是: 2ASK比2FSK高3dB ,2FSK比2PSK高3dB。反之,若信噪比一定,2PSK系统的误码率比2FSK的小,2FSK系统的误码率比2ASK的小。结论:在抗加性高斯白噪声方面,相干2PSK性能最好,2FSK次之,2ASK最差。,99,PPT课件,误码率Pe与信噪比r的关系曲线,100,PPT课件,传输带宽频带利用率,101,PPT课件,信道特性对调制系统的影响 信道特性变化的灵敏度对最佳判决门限有一定的影响。 2ASK系统最差。2FSK系统和2PSK系统较好。设备复杂性与成本 在高速数据传输中,相干2PSK及2DPSK用得较多,而在中、低速数据传输中,特别是在衰落信道中,非相干2FSK用得较为普遍。,102,PPT课件,例10,在PSTN中,信道在6003000Hz频带内传输2DPSK信号。若接收机输入信号幅度为0.1v,接收输入信噪比为9dB。试求: (1)2DPSK信号的传码率; (2)求接收机输入端高斯噪声双边功率谱密度。 (3)差分相干解调时,系统的误码率。 (4)若保持误码率不变,改为2ASK传输,接收端 采用包络解调,其它参量不变,求接收端输入 信号幅度。,103,PPT课件, 7.4多进制数字调制原理及抗噪声性能,用二进制序列“0”和“1”分别对应载波的两种状态(如2ASK的两种幅度、2FSK的两种频率、2PSK的两种相位),这样的调制叫二元调制。为了提高传信率,比如用四进制数去对应载波的四种状态,就可进行四元调制,一位四进制码相当于二位二进制码,传信率就会加倍。同理,还可以设计出更多进制的数字调制系统。,104,PPT课件,与二进制数字调制系统相比,多进制数字调制系统具有以下几个特点: 在码元速率(传码率)相同条件下,可以提高信息速率(传信率),从而提高系统的有效性。当码元速率相同时,M进制数字传输系统的信息速率是二进制的 log2M 倍。 (Rb = RB log2M) 在信息速率相同条件下,可降低码元速率,此时M进制码元宽度是二进制的log2M 倍,这样增加了每个码元的能量,减小了码间串扰的影响,从而提高了传输的可靠性。 在接收机输入信噪比相同条件下, 多进制数字传输系统的误码率比相应的二进制系统要高。 与二进制比较,增加了发射功率和实现上的复杂性。,105,PPT课件,用多进制的数字基带信号调制载波,就可以得到多进制数字调制信号。 通常,取多进制数M为2的幂次(M2k)。当携带信息的参数分别为载波的幅度、频率或相位时,数字调制信号为多进制幅度振幅键控(MASK:M-ary Amplitude Shift Keying)、多进制频移键控(MFSK)、多进制相移键控(MPSK)和多进制差分相移键控(MDPSK) 。,106,PPT课件,一、多进制振幅键控(MASK),用载波幅度的M个量化电平来对应M进制数字码元,叫M元振幅键控。 MASK信号相当于M电平的基带信号对载波进行双边带调幅。 SMASK(t) = S(t) cosct MASK信号的带宽是基带信号带宽的两倍。 BMASK = 2 fs,其中fs = 1 / Ts 是多进制码元速率。 MASK同样可以采用相干或非相干解调,相干解调时系统的误码率为 (P227 7.5-11),107,PPT课件,MASK信号的误码率曲线,108,PPT课件,109,PPT课件,SMASK(t)可看成M-1个时间不重合,振幅不同的2ASK信号的叠加。MASK的解调方法同样可以采用相干或非相干解调,不同在于抽样判定时需要M-1个判决门限电平(阈值)来区分M个不同的量化电平。 为保持与2ASK相同的分辨能力,每个电平台阶就应取与二元电平同样的大小,则总的信号幅度就会大大增加,消耗能量就会大增。 如果保持信号幅度不变,则每个量化台阶距离就会变小,则量化误差必然大大增加。 可见提高传信率是以提供更大能量或牺牲可靠性为代价换来的。,110,PPT课件,二、多进制频移键控(MFSK),选择M个不同的载波频率去对应M进制数字信号,叫M元数字调频。MFSK同样可以采用相干或非相干解调,相干解调时系统的误码率为 (P231 7.5-30)非相干解调时系统的误码率为 (P230 7.5-21),111,PPT课件,(b) 4FSK信号的取值,4FSK信号波形举例,112,PPT课件,MFSK系统的组成方框图,m=2k,例如:8FSK,k3,m2k8。八进制代码7对应二进制代码为111。,113,PPT课件,上图是多进制数字频率调制系统的组成方框图。发送端首先通过串并变换把串行的码流k个一组,变成k路并行,再通过逻辑电路选通m=2k中的一路。 发送端采用键控选频的方式, 在一个码元期间Ts内只有m个频率中的一个被选通输出。 接收端采用非相干解调方式,输入的MFSK信号通过m个中心频率分别为f1 , f2 , , fM 的带通滤波器,分离出发送的m个频率。再通过包络检波器、抽样判决器和逻辑电路,从而恢复出二进制信息。 多进制数字频率调制信号的带宽近似为 BMFSK = | fM - f1 | + 2fs。可见,MFSK信号具有较宽的频带,因而它的信道频带利用率不高。多进制数字频率调制一般在调制速率不高的场合应用。,114,PPT课件,三、多进制相移键控 ( MPSK ),用载波的M个相位来对应M进制数字码元,构成M进制数字调相。 同理,它提高了传信率,也有效的节省了频带,所付出的代价是减小了相位之间的差别(2PSK相差180度,而4PSK相差90度,MPSK只有360o/M ),抗干扰能力减弱。 下面以四相制为例介绍MPSK原理。 4PSK常称为正交相移键控(QPSK-Quadrature Phase Shift Keying),115,PPT课件,(4相),(2相),(8相),B方式/4体系,116,PPT课件,四进制码,实际是用2位二进制码表示的。常采用的做法是将二进制码流两两分组,进行串/并变换,变为两路并行传输,每个码元的持续时间是输入码元的2倍,叫“双比特码”。分别记作A路和B路。,为了两路在时间轴对齐,让A路延时一个码元时间。 每对双比特码用一种载波相位表示,比如: 900 , 1800 , 2700 , 00,117,PPT课件,118,PPT课件,(1)正交调相法(直接调相法) :,4PSK正交调制器方框图如图所示。输入的串行二进制码经串/并变换,分为两路速率减半的序列,通过单/双极性变换器分别产生双极性二电平信号an(t)和bn(t),然后分别对同相载波cos0t 和正交载波(-sin0t)进行调制,相加后即得到了4PSK信号。,1、调相有两种方法:正交调相法和相位选择合成法。,119,PPT课件,载波发生器产生4种相位的载波,输入的数字信息经串/并变换成为双比特码,经逻辑选择电路,每次选择其中一种作为输出,然后经过带通滤波器滤除高频分量。这是一种全数字化的方法,适合于载波频率较高的场合。,(2)相位选择合成法:直接用数字信号选择所需相位的载波以产生四相制信号。,120,PPT课件,设M=4(四进制), k = 45, 135, 225, 315,MPSK信号可表示为,121,PPT课件,2、QPSK的解调:,采用相干解调,用本地载波去相乘,自然把四个相位区分开来了。,122,PPT课件,3、偏置QPSK (OQPSK-Offset QPSK偏置正交相移键控),QPSK体制的缺点:它的相邻码元最大相位差达到180,这在频带受限的系统中会引起信号包络的很大起伏。 偏置QPSK的改进:为了减小此相位突变,将两个正交分量的两个比特a和b在时间上错开半个码元,使之不可能同时改变。这样安排后相邻码元相位差的最大值仅为90,从而减小了信号振幅的起伏。,123,PPT课件,OQPSK信号的波形与QPSK信号波形的比较,124,PPT课件,4相移QPSK信号是由两个相差4的QPSK星座图交替产生的,它也是一个4进制信号: 当前码元的相位相对于前一码元的相位改变45或135。例如,若连续输入“11 11 11 11”,则信号码元相位为“45 90 45 90 ” 优点:这种体制中相邻码元间总有相位改变、最大相移为135,比QPSK的最大相移小。,4、/4相移QPSK,125,PPT课件,与二元调相2PSK存在“0模糊”相似,四元调相4PSK也存在“四相模糊”问题。 所谓“四相模糊”指4PSK存在四种相位,我们的本地载波与哪一个同相位呢?不同的参考相位,将会使判定结果完全不同(有四种结果)。 为此,同二元差分调相一样,也采用四元差分调相4DPSK(QDPSK)来解决这个问题。,四、多进制差分相移键控(MDPSK):,126,PPT课件,QDPSK信号编码方式如上表所示。表中k是相邻码元的相位差。这里有A和B两种方式。B方式QDPSK有时又称为/4 QDPSK。,A方式 B方式,127,PPT课件,QDPSK信号(A方式)产生原理图,128,PPT课件,QDPSK信号相干解调 (极性比较法) 加码反变换器原理图(A方式),129,PPT课件,QDPSK信号差分正交解调 (相位比较法)(A方式),130,PPT课件,MPSK信号的功率谱密度 下图给出了信息速率相同的信号单边功率谱,M越大,功率谱主瓣越窄,从而频带利用率越高,Rb/3,131,PPT课件,对绝对相移而言,参考相位为载波的初相;对差分相移而言,参考相位为前一已调载波的末相(当载波频率是码元速率的整数倍时,也可认为是初相)。各相位值都是对参考相位而言的,正为超前,负为滞后。,设发送数字信息序列为11 01 10 11 00 10,试按下列要求,分别画出相应的4PSK及4DPSK信号的所有可能波形。,例11,B方式,A方式,132,PPT课件,四相制信号波形图,1 1 0 1 1 0 1 1 0 0 1 0,4PSK,B方式,4DPSK,B方式,-/4 /4 -3/4 -/4 3/4 -3/4,-/4 /4 -3/4 -/4 3/4 -3/4,4PSK,A方式,-/2 0 -/2 /2 ,4DPSK,A方式,-/2 0 -/2 /2 ,133,PPT课件,数字带通传输系统小结,数字带通调制是提高数字信息传输有效性和可靠性的重要手段;在AWGN(加性高斯白噪声)信道条件下,2PSK的误码性能最优,其次是2DPSK、2FSK和2ASK; 从实现调制系统的复杂性看,基于非相干解调的2FSK和2ASK系统的复杂性较低,2PSK或2DPSK系统的实现成本要高一些;从对频谱的利用效率看,2PSK、2DPSK、2ASK系统比2FSK要高。,134,PPT课件,数字调制系统的基本作用是将数字信息序列映射为合适的信号波形,以便发射到(无线)信道中去。数字调制系统对频谱资源的利用程度和抗噪声能力是我们考察数字调制方式的重要指标。因此,本章在详细说明基本调制方式的原理后,介绍一些比基本调制系统抗噪声性能和/或频谱利用率更高的调制方式,主要包括:多进制的调制(MASK、MFSK、MPSK等)、QAM、MSK和GMSK等。,135,PPT课件,谢 谢 大 家,136,PPT课件,

    注意事项

    本文(第7章 数字带通传输系统课件.ppt)为本站会员(小飞机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开