欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > PPT文档下载  

    QM2-波函数及薛定谔方程课件.ppt

    • 资源ID:1287768       资源大小:1,010.52KB        全文页数:108页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    QM2-波函数及薛定谔方程课件.ppt

    2.1 波函数的统计解释 2.2 态叠加原理 2.3 Schrodinger 方程 2.4 粒子流密度和粒子数守恒定律 2.5 定态Schrodinger方程 2.6 一维无限深势阱 2.7 线形谐振子 2.8 势垒贯穿,第二章:波函数和薛定谔方程,2.1 波函数的统计解释 第二章:波函数和薛定谔方程,2.1 波函数的统计解释,(一)波函数 (二)波函数的波恩统计解释 (三)波函数的性质,2.1 波函数的统计解释(一)波函数,3个问题?,描写自由粒子的平 面 波,如果粒子处于随时间和位置变化的力场中运动,他的动量和能量不再是常量,粒子的状态就不能用平面波描写,而必须用较复杂的波描写,一般记为:,描写粒子状态的波函数,它通常是一个复函数。,称为 deBroglie 波。此式称为自由粒子的波函数。,(1) 是怎样描述粒子的状态呢?,(2) 如何体现波粒二象性的?,(3) 描写的是什么样的波呢?,(一)波函数,返 回1,3个问题? 描写自由粒子的平 面 波如果粒子,(1)两种错误的看法,1. 波由粒子组成,如水波,声波,由分子密度疏密变化而形成的一种分布。,这种看法是与实验矛盾的,它不能解释长时间单个电子衍射实验。,电子一个一个的通过小孔,但只要时间足够长,底片上逐渐呈现出衍射条纹。这说明电子的波动性并不是许多电子在空间聚集在一起时才有的现象,单个电子就具有波动性。,波由粒子组成的看法夸大了粒子性的一面,而抹杀了粒子的波动性的一面,具有片面性。,O,O,事实上,正是由于单个电子具有波动性,才能理解氢原子(只含一个电子!)中电子运动的稳定性以及能量量子化这样一些量子现象。,电子源感光屏(1)两种错误的看法1. 波由粒子组成如水波,声,2. 粒子由波组成,电子是波包。把电子看成是三维空间中连续分布的某种物质波包。因此呈现出干涉和衍射等波动现象。波包的大小即电子的大小,波包的群速度即电子的运动速度。 什么是波包?波包是各种波长平面波的迭加。 平面波描写自由粒子,其特点是充满整个空间,这是因为平面波振幅与位置无关。如果粒子由波组成,那么自由粒子将充满整个空间,这是没有意义的,与实验事实相矛盾。 实验上观测到的电子,总是处于一个小区域内。例如在一个原子内,其广延不会超过原子大小1 。 电子究竟是什么东西呢?是粒子?还是波? 电子既不是经典的粒子,也不是经典的波!,2. 粒子由波组成电子是波包。把电子看成是三维空间中连续分布,经典概念中 1.实在的物理量的空间分布作周期性的变化; 波意味着 2干涉、衍射现象,即相干叠加性。,1.入射电子流强度小,开始显示电子的微粒性,长时间亦显示衍射图样;,O,我们再看一下电子的衍射实验,2. 入射电子流强度大,很快显示衍射图样.,经典概念中 1.有一定质量、电荷等“颗粒性”的属性;,结论:衍射实验所揭示的电子的波动性是: 许多电子在同一个实验中的统计结果,或者是一个电子在许多次相同实验中的统计结果。 波函数正是为了描述粒子的这种行为而引进的,在此基础上,Born 提出了波函数意义的统计解释。,r 点附近衍射花样的强度 正比于该点附近感光点的数目, 正比于该点附近出现的电子数目, 正比于电子出现在 r 点附近的几率。,在电子衍射实验中,照相底片上,结论:衍射实验所揭示的电子的波动性是:, 据此,描写粒子的波可以认为是几率波,反映微观客体运动的一种统计规律性,波函数(r)有时也称为几率振幅。 Born统计解释是量子力学的基本原理。, | (r,t)|2 的物理意义是表示在时刻t,电子出现在 r 点附近几率的大小。确切的说,| (r,t)|2 d表示在时刻 t,在 r 点附近体积元 d 中找到粒子的几率。, 波函数的Born统计解释: 波函数在空间某点的强度( | (r)|2 )和在该点找到粒子的几率成比例。, 据此,描写粒子的波可以认为是几率波,反映微观客体运动,(三)波函数的性质,在t 时刻,r 点,d = dx dy dz 体积内,找到由波函数 (r,t)描写的粒子的几率是: d W( r, t) = C| (r,t)|2 d, 其中,C是比例系数。,根据波函数的几率解释,波函数有如下重要性质:,(1)几率和几率密度,在 t时刻 r 点,单位体积内找到粒子的几率是: w( r, t ) = C | (r,t)|2 称为几率密度。, 在体积 V 内,在t 时刻找到粒子的几率为: W(t) = V dW = Vw( r, t ) d= CV | (r,t)|2 d,(三)波函数的性质在t 时刻,r 点,d = dx d,(2)平方可积, 由于粒子在空间总要出现(不讨论粒子产生和湮灭情况),所以在全空间找到粒子的几率应为一,即: C | (r , t)|2 d= 1, 从而得常数 C 之值为: C = 1/ | (r , t)|2 d,这就要求波函数必须是绝对值平方可积的函数。,若, | (r , t)|2 d , 则 C 0, 这是没有意义的。,*,(2)平方可积 由于粒子在空间总要出现(不讨论粒子产生,(3)归一化波函数, 这与经典波不同。经典波波幅增大一倍,则相应的波动能量将为原来的 4 倍,因而代表完全不同的波动状态。经典波无归一化问题。, (r , t ) 和 C (r , t ) 所描写状态的相对几率是相同的,这里的 C 是常数。因为在 t 时刻,在空间任意两点 r1 和 r2 处找到粒子的相对几率之比是:, 由于粒子在全空间出现的几率等于一,所以粒子在空间各点出现的几率只取决于波函数在空间各点强度的相对比例,而不取决于强度的绝对大小,因而,将波函数乘上一个非零常数后,所描写的粒子状态不变,即 (r, t) 和 C (r, t) 描述同一状态,由此可见, (r , t ) 和 C (r , t ) 描述的是同一几率波,所以波函数有一常数因子不定性。,(3)归一化波函数 这与经典波不同。经典波波幅增大一倍,, 归一化常数,若 (r , t ) 没有归一化, | (r , t )|2 d= A (A 是大于零的常数),则有 |(A)-1/2 (r , t )|2 d= 1, 也就是说,(A)-1/2 (r , t )是归一化的波函数, 与 (r , t )描写同一几率波, (A)-1/2 称为归一化因子。, 注意:对归一化波函数仍有一个模为一的相因子不定性。 若(r,t)是归一化波函数,那末,expi (r , t ) 也是归一化波函数(其中是实数),与前者描述同一几率波。这实质上是一个整体U(1)规范变换!, 归一化常数若 (r , t ) 没有归一化,,(4)平面波归一化,I Dirac 函数,定义:,或等价的表示为:对在x=x0 邻域连续的任何函数 f(x)有:,函数 亦可写成 Fourier 积分形式:,令 k=px/, dk= dpx/, 则,性质:,(4)平面波归一化I Dirac 函数 定义:,II 平面波归一化,写成分量形式,t=0 时的平面波,考虑一维积分,若取 A12 2 = 1,则 A1= 2-1/2, 于是,II 平面波归一化写成分量形式t=0 时的平面波考虑一维积,三维情况:,其中,注意:这样归一化后的平面波其模的平方仍不表示几率密度,依然只是表示平面波所描写的状态在空间各点找到粒子的几率相同。,三维情况:其中注意:这样归一化后的平面波其模的平方仍不表示几,2.2 态叠加原理,(一)态叠加原理 (二)动量空间(表象)的波函数,2.2 态叠加原理(一)态叠加原理,(一)态叠加原理, 微观粒子具有波动性,会产生衍射图样。而干涉和衍射的本质在于波的叠加性,即可相加性,两个相加波的干涉的结果产生衍射。因此,同光学中波的叠加原理一样,量子力学中也存在波叠加原理。 因为量子力学中的波,即波函数决定体系的状态,称波函数为状态波函数,所以量子力学的波叠加原理称为态叠加原理。, 如果1 和2是体系的可能状态,那么它们的线形迭加 = C11 + C22 (C1, C2 是复数)也是这个体系的一个可能状态。,(一)态叠加原理 微观粒子具有波动性,会产生衍射图样。而,考虑电子双缝衍射,= C11 + C22 也是电子的可能状态。 空间找到电子的几率则是: |2 = |C11+ C22|2 = (C1*1*+ C2*2*) (C11+ C22) = |C1 1|2+ |C22|2 + C1*C21*2 + C1C2*12*,2,电子穿过狭缝出现在点的几率密度,电子穿过狭缝出现在点的几率密度,干涉项 正是由于干涉项的出现,才产生了衍射条纹。,一个电子有 1 和 2 两种可能的状态, 是这两种状态的叠加。,考虑电子双缝衍射 = C11 + C22 也是电子的,其中C1 和 C2 是复常数,这就是量子力学的态叠加原理。,态叠加原理一般表述: 若1 ,2 ,., n ,.是体系的一系列可能的状态,则这些态的线性叠加 = C11 + C22 + .+ Cnn + . (其中 C1 , C2 ,.,Cn ,.为复常数)。 也是体系的一个可能状态。 处于态的体系,部分的处于 1态,部分的处于2态.,部分的处于n ,处于 i态的几率是 |Ci|2.,一般情况下,如果1和2 是体系的可能状态,那末它们的线性叠加= C11 + C22 也是该体系的一个可能状态.,其中C1 和 C2 是复常数,这就是量子力学的态叠加原理。态,例:,电子在晶体表面反射后,电子可能以各种不同的动量 p 运动。具有确定动量的运动状态用deBroglie 平面波表示,根据叠加原理,在晶体表面反射后,电子的状态可表示成 p 取各种可能值的平面波的线性叠加,即,而衍射图样正是这些平面波叠加干涉的结果。,p,例:电子在晶体表面反射后,电子可能以各种不同的动量 p 运动,(二)动量空间(表象)的波函数,(r,t)是以坐标 r 为自变量的波函数,坐标空间(表象)波函数; C(p, t) 是以动量 p 为自变量的波函数,动量空间(表象)波函数; 二者描写同一量子状态。,波函数 (r,t) 可用各种不同动量的平面波表示, 下面我们给出简单证明。,展开系数,令,则 可按p 展开,(二)动量空间(表象)的波函数(r,t)是以坐标 r 为自,若 (r,t)已归一化,则 C(p, t)也是归一化的,若 (r,t)已归一化,则 C(p, t)也是归一化的,2.3 Schrodinger 方程,(一)引言 (二)引进方程的基本考虑 (三)自由粒子满足的方程 (四)势场 V (r) 中运动的粒子,2.3 Schrodinger 方程(一)引言, 这些问题在1926年Schrodinger 提出了波动方程之后得到了圆满解决。, 微观粒子量子状态用波函数完全描述. 波函数确定之 后,粒子的任何一个力学量的平均值及其测量的可能值 和相应的几率分布也都被完全确定,波函数完全描写微 观粒子的状态。因此量子力学最核心的问题就是要解决 以下两个问题:,(1)在各种情况下,找出描述系统状态的波函数; (2)波函数如何随时间演化。,(一)引言, 这些问题在1926年Schrodinger 提出了波动,(二)引进方程的基本考虑,从牛顿方程,人们可以确定以后任何时刻 t 粒子的状态 r 和 p 。因为初始条件知道的是坐标及其对时间的一阶导数,所以方程是时间的二阶常微分方程。,让我们先回顾一下经典粒子运动方程,看是否能给我们以启发。,(1)经典情况,(二)引进方程的基本考虑从牛顿方程,人们可以确定以后任何时,(2)量子情况,3第三方面,方程不能包含状态参量,如 p, E 等,否则方程只能被粒子特定的状态所满足,而不能为各种可能的状态所满足。,1因为,t = t0 时刻,已知的初态是( r, t0) 且只知道这样一个初条件,所以,描写粒子状态的波函数所满足的方程只能含对时间 的一阶导数。,2另一方面,要满足态叠加原理,即,若1( r, t ) 和2( r, t )是方程的解,那末。 ( r, t)= C11( r, t ) + C22( r, t ) 也应是该方程的解。这就要求方程应是线性的,也就是说方程中只能包含, 对时间的一阶导数和对坐标各阶导数的一次项,不能含它们的平方或开方项。,(2)量子情况 3第三方面,方程不能包含状态参量,如 p,(三)自由粒子满足的方程,这不是所要寻找的方程,因为它包含状态参量 E 。将对坐标二次微商,得:,将上式对 t 微商,得:,(1)(2)式,(三)自由粒子满足的方程这不是所要寻找的方程,因为它包含状态,满足上述构造方程的三个条件,讨论:,通过引出自由粒子波动方程的过程可以看出,如果能量关系式 E = p2/2 写成如下方程形式:,做算符替换(4)即得自由粒子满足的方程(3)。,(1)(2)式,返回,-,满足上述构造方程的三个条件讨论:通过引出自由粒子波动方程的过,(四)势场 V(r) 中运动的粒子, 该方程称为 Schrodinger 方程,也常称为波动方程。,若粒子处于势场 V(r) 中运动,则能动量关系变为:,将其作用于波函数得:,做(4)式的算符替换得:,(四)势场 V(r) 中运动的粒子 该方程称为 Schr,多粒子体系的 Schrodinger 方程,设体系由 N 个粒子组成, 质量分别为 i (i = 1, 2,., N) 体系波函数记为 ( r1, r2, ., rN ; t) 第i个粒子所受到的外场 Ui(ri) 粒子间的相互作用 V(r1, r2, ., rN) 则多粒子体系的 Schrodinger 方程可表示为:,多粒子体系的 Schrodinger 方程设体系由 N 个,多粒子体系 Hamilton 量,对有 Z 个电子的原子,电子间相互作用为 Coulomb 排斥作用:,而原子核对第 i 个电子的 Coulomb 吸引能为:,假定原子核位于坐标原点,无穷远为势能零点。,例如:,多粒子体系 Hamilton 量对有 Z 个电子的原子,电子,2.4 粒子流密度和粒子数守恒定律,(一)定域几率守恒 (二)再论波函数的性质,2.4 粒子流密度和粒子数守恒定律(一)定域几率守恒,(一) 定域几率守恒,考虑低能非相对论实物粒子情况,因没有粒子的产生和湮灭问题,粒子数保持不变。对一个粒子而言,在全空间找到它的几率总和应不随时间改变,即,在讨论了状态或波函数随时间变化的规律后,我们进一步讨论粒子在一定空间区域内出现的几率将怎样随时间变化。粒子在 t 时刻 r 点周围单位体积内出现的几率即几率密度是:,(一) 定域几率守恒考虑低能非相对论实物粒子情况,因没有粒,证明:,考虑 Schrodinger 方程及其共轭式:,取共轭,证明:考虑 Schrodinger 方程及其共轭式:取共轭,将上式对空间任意一个体积积分,则有:,左端表示闭区域内找到粒子的总几率在单位时间内的增量,所以(7)式是几率(粒子数)守恒的积分表示式。,连续性方程的微分形式,使用 Gauss 定理,J是几率流密度矢量。,右端表示单位时间内通过的封闭表面 S 流入(面积分前面的负号)内的几率,将上式对空间任意一个体积积分,则有:左端表示闭区域内找到,令 Eq.(7)中的体积趋于 ,即让积分对全空间进行,考虑到任何真实的波函数应该是平方可积的,波函数在无穷远处为零,则式右面积分趋于零,于是 Eq.(7)变为:,这表明,波函数归一化不随时间改变,其物理意义是粒子既未产生也未消灭。,令 Eq.(7)中的体积趋于 ,即让积分对全空间,讨论:,(1) 这里的几率守恒具有定域性质,当空间某处几率减少了,必然另外一些地方几率增加,使总几率不变,并伴随着某种流来实现这种变化。,(3)同理可得量子力学的电荷守恒定律:,表明电荷总量不随时间改变,质量密度 和 质量流密度矢量,电荷密度 和 电流密度矢量,讨论:(1) 这里的几率守恒具有定域性质,当空间某处几率,(二)再论波函数的性质,1. 由 Born 的统计解释可知,描写粒子的波函数已知后,就知道了粒子在空间的几率分布,即 d (r, t) = |(r, t)|2 d 2. 已知 (r, t), 则任意力学量的平均值、可能值及相应的几率就都知道了,也就是说,描写粒子状态的一切力学量就都知道了。所以波函数又称为状态波函数或态函数。 3.知道体系所受力场和相互作用及初始时刻体系的状态后,由Schrodinger方程即可确定以后时刻的状态。,(1)波函数完全描述粒子的状态,(二)再论波函数的性质1. 由 Born 的统计解释可知,描,方程右端含有及其对坐标一阶导数的积分,由于积分区域是任意选取的,所以S是任意闭合面。要使积分有意义,必须在变数的全部范围,即空间任何一点都应是有限、连续且其一阶导数亦连续。 概括之,波函数在全空间每一点通常应满足单值性、有限性、连续性三个条件,该条件称为波函数的标准条件。,2.根据粒子数守恒定律 :,(2)波函数标准条件,根据Born统计解释:=*(r, t)(r, t) 是粒子在t时刻出现在 r点的几率,这是一个确定的数,所以要求(r, t)应是 r, t的单值函数且有限。,方程右端含有及其对坐标一阶导数的积分,由于积分区域是任意,(3)量子力学基本假定 I、 II,量子力学基本假定 I: 波函数完全描述粒子的状态,量子力学基本假定 II 波函数随时间的演化遵从 Schrodinger 方程,(3)量子力学基本假定 I、 II量子力学基本假定 I: 量,2.5 定态Schrodinger方程,(一)定态Schrodinger方程 (二)Hamilton算符和能量本征值方程 (三)求解定态问题的步骤 (四)定态的性质,2.5 定态Schrodinger方程(一)定态Schro,(一)定态Schrodinger方程,现在让我们讨论 有外场情况下的定态 Schrodinger 方程:,令:,于是:,V(r)与t无关时,可以分离变量,代入,等式两边是相互无关的物理量,故应等于与 t, r 无关的常数,(一)定态Schrodinger方程现在让我们讨论 有外场情,该方程称为定态 Schrodinger 方程,(r)也可称为定态波函数,或可看作是t=0时刻(r,0)的定态波函数。,由de Broglie关系可知: E 就是体系处于波函数(r,t)所描写的状态时的能量。也就是说,此时体系能量有确定的值,所以这种状态称为定态,波函数(r,t)称为定态波函数。,定态波函数:,该方程称为定态 Schrodinger 方程,(r)也,(二)Hamilton算符和能量本征值方程,(1)Hamilton 算符,由 Schrodinger 方程:,(二)Hamilton算符和能量本征值方程(1)Hamilt,(1)一个算符作用于一个函数上得到一个常数乘以该函数这与数学物理方法中的本征值方程相似。 数学物理方法中:微分方程 + 边界条件构成本征值问题;,(2)量子力学中:波函数要满足三个标准条件,对应数学物理方法中 的边界条件,称为波函数的自然边界条件。因此在量子力学中称 上面的方程为能量本征值方程。常量 E 称为算符 H 的能量本征 值;称为算符 H 的能量本征函数。 (3)由上面讨论可知,当体系处于能量本征波函数所描写的状态 (简称能量本征态)时,粒子能量有确定的数值,这个数值就是与 这个本征函数相应的能量算符的本征值。,(2)能量本征值方程,(1)一个算符作用于一个函数上得到一个常数乘以该函数这与数,(三)求解定态问题的步骤, 讨论定态问题就是要求出体系可能的定态波函数 ( r, t) 和在这些态中的能量 E。其具体步骤如下:,(1)写出定态 Schrodinger方程,(2)根据波函数三个标准条件求解能量 E 的本征值问题,得:,(3)写出与En对应的定态波函数,(4)通过归一化确定归一化系数 Cn,(三)求解定态问题的步骤 讨论定态问题就是要求出体系可能,(四)定态的性质,(2)几率密度矢量与时间无关,(1)几率密度与时间无关,(四)定态的性质(2)几率密度矢量与时间无关(1)几率密度与, 综上所述,当满足下列三个等价条件中的任何一个时,就是定态波函数: 1. 描述的状态其能量有确定的值; 2. 满足定态Schrodinger方程; 3. |2 与 t无关。,(3)任何不显含t的力学量平均值与t 无关,力学量平均值的定义, 综上所述,当满足下列三个等价条件中的任何一个时,,2.6 一维无限深势阱,先用 Schrodinger 方程来处理一类简单的问题: 一维定态问题。其好处有四: (1)有助于具体理解已学过的基本原理; (2)有助于进一步引入其它基本原理;(3)处理一维问题,数学简单,能对结果进行细致讨论, 量子体系的许多特征都可以在一维问题中展现出来; (4)一维问题还是处理各种复杂问题的基础。,三个问题:一维无限深势阱; 线性谐振子; 一维势垒散射问题。,2.6 一维无限深势阱先用 Schrodinger 方程,(二)一维无限深势阱,求解 S方程 分四步: (1)列出各势域的一维SE (2)解方程 (3)使用波函数标准条件定解 (4)定归一化系数,(二)一维无限深势阱求解 S方程 分四步: -a,(1)列出各个势能区域的 SE,方程可 简化为:,势V(x)分为三个区域, 用 I 、II 和 III 表示, 其上的波函数分别为 I(x),II(x) 和 III (x)。则方程为:,2,2,(1)列出各个势能区域的 SE方程可 -a 0,根据数理方程,上面两类方程的通解分别为:,根据数理方程,上面两类方程的通解分别为:,(3)使用波函数标准条件,从物理考虑,粒子不能透过无穷高的势壁。 要求在阱壁上和阱外波函数为零,特别是 (-a) = (a) = 0。,在I, III区域, , 的有限条件要求在此区域=0,(3)使用波函数标准条件从物理考虑,粒子不能透过无穷高的在I,使用标准条件 3。连续:,2)波函数导数连续: 在边界x=-a,势有无穷跳跃,波函数微商不连续。这是因为: 若I(-a) = II(-a), 则有,0 = A cos(-a + ) 与上面波函数连续条件导出的结果 A sin(-a + )= 0 矛盾,二者不能同时成立。所以波函数导数在有无穷跳跃处不连续。,1)波函数连续:,使用标准条件 3。连续:2)波函数导数连续: 1)波函数连续,(1)+(2),(2)-(1),两种情况:,由(4)式,(1)+(2)(2)-(1)两种情况:由(4)式,讨论,状态不存在,描写同一状态,所以 n 只取正整数,即,于是:,或,讨论状态不存在描写同一状态所以 n 只取正整数,即于是:或,于是波函数:,由(3)式,类似 I 中关于 n = m 的讨论可知:,于是波函数:由(3)式类似 I 中关于 n = m 的讨,综合 I 、II 结果,最后得:,能量最低的态称为基态,其上为第一激发态、第二激发态依次类推。,综合 I 、II 结果,最后得:能量最低的态称为基态,其上,由此可见,对于一维无限深方势阱,粒子束缚于有限空间范围,在无限远处, = 0 。这样的状态,称为束缚态。一维有限运动能量本征值是分立能级,组成分立谱。,(4)由归一化条件定系数 A,由此可见,对于一维无限深方势阱,粒子束缚于有限空间范围,在,小结 由无限深方势阱问题的求解可以看 出,解S方程的一般步骤如下:,一、列出各区间的Schrodinger方程; 二、求解S-方程;,三、利用波函数的标准条件(单值、有限、连续) 定未知数和能量本征值;四、由归一化条件定出归一化系数。,小结 由无限深方势阱问题的求解可以看 出,解S方程,(三)宇称,(1)空间反射:空间矢量反向的操作。,(2)此时如果有:,称波函数具有正宇称(或偶宇称);,称波函数具有负宇称(或奇宇称);,(三)宇称(1)空间反射:空间矢量反向的操作。(2)此时如果,(四)讨论,一维无限深 势阱中粒子 的状态,(2)n = 0 , E = 0, = 0,态不存在,无意义。 而n = k, k=1,2,.,可见,n取负整数与正整数描写同一状态。,(1)n = 1, 基态, 与经典最低能量为零不同, 这是微观粒子波动性的表 现,因为“静止的波”是没 有意义的。,(四)讨论一维无限深 (2)n = 0 , E = 0, ,(4)n*(x) = n(x) 即波函数是实函数,(5)定 态 波 函 数,(3)波函数宇称,(4)n*(x) = n(x) 即波函数是实函数(5,2.7 线性谐振子,(一)线性谐振子 (1)方程的建立 (2)求解 (3)应用标准条件 (4)厄密多项式 (5)求归一化系数 (6)讨论(二)实例,2.7 线性谐振子(一)线性谐振子,(1)方程的建立,线性谐振子的 Hamilton量:,则 Schrodinger 方程可写为 :,为简单计, 引入无量纲变量代替x,,此式是一变系数 二阶常微分方程,(1)方程的建立线性谐振子的 Hamilton量:则 S,(2)求解,为求解方程,我们先看一下它的渐 近解,即当 时波函数 的行为。在此情况下, 2, 于是方程变为:,其解为: = exp2/2,,1. 渐近解,欲验证解的正确性,可将其代回方程,,波函数有限性条件:,当 时,应有 c2 = 0,,因整个波函数尚未归一化,所以c1可以令其等于1。最后渐近波函数为:,2 1,(2)求解为求解方程,我们先看一下它的渐 其解为: =,其中 H() 必须满足波函数的单值、有限、连续的标准条件。即: 当有限时,H()有限; 当时,H()的行为要保证() 0。,将()表达式代入方程得 关于 待求函数 H() 所满足的方程:,2. H()满足的方程,其中 H() 必须满足波函数的单值、有限、连续的标准条件,3.级数解,我们以级数形式来求解。 为此令:,用 k 代替 k,3.级数解我们以级数形式来求解。 为此令:用 k 代替 k,由上式可以看出: b0 决定所有角标k为偶数的系数; b1 决定所有角标k为奇数的系数。 因为方程是二阶微分方程,应有两个 线性独立解。可分别令:,b0 0, b1=0. Heven(); b1 0, b0=0. Hodd().,该式对任意都成立, 故同次幂前的系数均应为零,,只含偶次幂项,只含奇次幂项,则通解可记为: H = co Hodd + ce Heven = (co Hodd + ce Heven e) exp-2/2,即: bk+2(k+2)(k+1)- bk 2k + bk(-1) = 0 从而导出系数 bk 的递推公式:,由上式可以看出: b0 0, b1=0. Heven,(3)应用标准条件,(I)=0 exp-2/2|=0 = 1 Heven()|=0 = b0 Hodd()|=0 = 0 , 皆有限,(II) 需要考虑无穷级数H()的收敛性,为此考察相邻 两项之比:,单值性和连续性二条件自然满足, 只剩下第三个有限性条件需要进行讨论。,因为H()是一个幂级数,故应考虑他的收敛性。考虑一些特殊点,即势场有跳跃的地方以及x=0, x 或=0, 。,(3)应用标准条件(I)=0 (II) 需要考虑,考察幂级数exp2的 展开式的收敛性,比较二级数可知: 当时, H()的渐近 行为与exp2相同。,考察幂级数exp2的 比较二级数可知:,所以总波函数有如下发散行为:,为了满足波函数有限性要求,幂级数 H() 必须从某一项截断变成一个多项式。换言之,要求 H() 从某一项(比如第 n 项)起 以后各项的系数均为零,即 bn 0, bn+2 = 0.,由递推关系)得:,所以总波函数有如下发散行为:为了满足波函数有限性要求,幂级,QM2-波函数及薛定谔方程课件,能级分布,结论 基于波函数 在无穷远处的 有限性条件导致了 能量必须取 分立值。,能级分布-3 -2 -1 0,(4)厄密多项式,附加有限性条件得到了 H()的一个多项式,该多项式称为厄密 多项式,记为 Hn(),于是总波 函数可表示为:,由上式可以看出,Hn() 的最高次幂是 n 其系数是 2n。,归一化系数,Hn() 也可写成封闭形式:,(4)厄密多项式附加有限性条件得到了 H()的一个多项式,,厄密多项式和谐振子波函数的递推关系:,从上式出发,可导出厄密多项式的递推关系:,应 用 实 例,例:已知 H0 = 1, H1=2,则 根据上述递推关系得出: H2 = 2H1-2nH0 = 42-2,下面给出前几个厄密 多项式具体表达式: H0=1 H2=42-2 H4 = 164-482+12 H1=2 H3=83-12 H5=325-1603+120,基于厄密多项式的递推关系可以导出谐振子波函数(x)的递推关系:,厄密多项式和谐振子波函数的递推关系:从上式出发,可导出厄密多,(5)求归一化系数,可以证明,归一化系数为,最后可得:线形谐振子的波函数为:,(5)求归一化系数可以证明,归一化系数为最后可得:线形谐振子,(5)求归一化系数,( 分 步 积 分 ),该式第一项是一个多项式与 exp-2 的 乘积,当代入上下限=后,该项为零。,继续分步积分到底,因为Hn的最高次项 n的系数是2n,所以 dnHn /dn = 2n n!。,于是归一化系数,则谐振子 波函数为:,(I)作变量代换,因为=x, 所以d= dx; (II)应用Hn()的封闭形式。,(5)求归一化系数 ( 分 步 积 分 )该式第一项是一个多,(6)讨论,1。上式表明,Hn()的最高次项是(2)n。所以: 当 n=偶,则厄密多项式只含的偶次项; 当 n=奇,则厄密多项式只含的奇次项。,2. n的宇称: (-1)n,上式描写的谐振子波函数所包含的 exp-2/2是的偶函数,所以n的宇称由厄密多项式 Hn() 决定; (-1)n,(6)讨论1。上式表明,Hn()的最高次项是(2)n。所,3. 对应一个谐振子能级只有一个本征函数,即一个状态,所以能级是非简并的。4、零点能: 值得注意的是,基态能量 E0=1/2 0, 称为零点能。这与无穷深势阱中的粒子的基态能量不为零是相似的,是微观粒子波粒二相性的表现,能量为零的“静止的”波是没有意义的,零点能是量子效应。,3. 对应一个谐振子能级只有一个本征函数,即一个状态,所以能,n = 0,n = 1,n = 2,4. 波函数的节点数,分析波函数可知量子力学的谐振子波函数n有 n 个节点,在节点处找到粒子的几率为零。而经典力学的谐振子在 -a, a 区间每一点上都能找到粒子,没有节点。,n = 0n = 1n = 24. 波函数的分析波函数可知量,5. 几率分布,以基态为例,在经典情形下,粒子将被限制在| x| 1 范围中运动。这是因为振子在这一点(|x| = 1)处,其势能V(x)=(1/ 2)2 x2 = 1/2 = E0,即势能等于总能量,动能为零,粒子被限制在阱内。,然而,量子情况与此不同。对于基态,其几率密度是: 0() = |0()|2 = = N02 exp-2 分析上式可知:一方面表明在= 0处找到粒子的几率最大; 另一方面,在|1处,即在阱外找到粒子的几率不为零, 与经典情况完全不同。,-1 0 10()n()n=2n=,N=10 情况,但是,当n很大时,经典和量子情况下的几率分布趋于一致,5. 几率分布,N=10 情况但是,当n很大时,经典和量子情况下的几率分布趋,(三)实例,解: 三维谐振子 Hamilton 量可以写为:,例1. 求三维谐振子能级,并讨论它的简并情况,(三)实例解: 三维谐振子 Hamilton 量可以写为:例,(2)本征方程及其能量本征值,解得能量本征值为:,则波函数三方向的分量 分别满足如下三个方程:,因此,设能量本征方程的解为:,如果系统 Hamilton 量可以写成 则必有:,(2)本征方程及其能量本征值解得能量本征值为:则波函数三方向,(3)简并度,当 N 确定后,能量本征值确定,但是对应同一N值的 n1, n2, n3 有多种不同组合,相应于若干不同量子状态,这就是简并。其简并度可决定如下:,当n1 , n2 确定后, n3 = N - n1 - n2,也就确定了,不增加不同组合的数目。故对给定N,n1 , n2, n3 可能组合数即简并度为:,(3)简并度当 N 确定后,能量本征值确定,但是对应同一N值,解:Schrodinger方程:,(1)解题思路,势V(x)是在谐振子势上叠加上-q x项,该项是x 的一次项,而振子势是二次项。如果我们能把这样的势场重新整理成坐标变量平方形式,就有可能利用已知的线性谐振子的结果。,求能量本征值和本征函数。,例2. 荷电 q 的谐振子,受到沿 x 向外电场 的作用,其势场为:,*,解:Schrodinger方程:(1)解题思路势V(x)是,(2)改写 V(x),(2)改写 V(x),(3)Hamilton量,进行坐标变换:,则 Hamilton 量变为:,(3)Hamilton量进行坐标变换: 则 Hamilton,(4)Schrodinger方程,该式是一新坐标下一维 线性谐振子Schrodinger 方程,于是可以利用已 有结果得:,新坐标下 Schrodinger 方程改写为:,本 征 能 量,本 征 函 数,(4)Schrodinger方程该式是一新坐标下一维 新坐标,2.8 一维势散射问题,(一)引言 (二)方程求解 (三)讨论 (四)应用实例,2.8 一维势散射问题 (一)引言,(一)引言,势垒穿透是粒子入射被势垒散射的 一维运动问题。典型势垒是方势垒, 其定义如下:,现在的问题是已知粒子以 能量 E 沿 x 正向入射。,(一)引言势垒穿透是粒子入射被势垒散射的 现在的问题是已知粒,(二)方程求解,因为 E 0, E V0, 所以 k1 0, k2 0. 上面的方程可改写为:,上述三个区域的SE可写为:,(1)E V0 情况,(二)方程求解因为 E 0, E V0, 所以 k1,定态波函数1,2,3 分别乘以含时因子 exp-iEt/ 即可看出:,式中第一项是沿x正向传播的平面波,第二项是沿x负向传播的平面波。由于在 x a 的III 区没有反射波,所以 C=0,于是解为:,波函数意义,定态波函数1,2,3 分别乘以含时因子 exp-iE,现在考虑波函数的连续性条件,1. 波函数连续,现在考虑波函数的1. 波函数连续,综合整理得到 4个联立方程:,2. 波函数导数连续,综合整理得到 2. 波函数,3. 求解线性方程组,3. 求解线性方程组,4. 透射系数和反射系数,为了定量描述入射粒子穿透势垒的几率和被 势垒反射的几率,定义透射系数和反射系数。,I 透射系数: 透射波几率流密度与入射波 几率流密度之比称为透射系数 D = JD/JI,II 反射系数: 反射波几率流密度与入射波 几率流密度之比称为反射系数 R = JR/JI,其物理意义是:描述贯穿到 x a 的 III区中的粒子在单位时间内流过垂直 x方向的单位面积的数目与入射粒子(在 x 0 的 I 区)在单位时间内流过垂直于x方向单位面积的数目之比。,下面求 D 和 R,4. 透射系数和为了定量描述入射粒子穿透势垒的几率和被 I,几率流密度矢量:,对一维定态问题,J 与时间无关,所以入射波为: = A expik1x,对透射波= C expik1x, 所以透射波几率流密度:,反射波= Aexp-ik1x, 所以反射波几率流密度:,其中负号表示与入 射波方向相反。,则入射波几率流密度矢量:,几率流密度矢量:对一维定态问题,J 与时间无关,对透射波=,于是透射系数为:,由以上二式显然有 D+R=1,说明入射粒子一部分贯穿势 垒到 x a 的III区,另一部分则被势垒反射回来。,同理得反射系数:,于是透射系数为:由以上二式显然有 D+R=1,说明入射粒子,(2)E V0情况,故可令: k2=ik3, 其中 k3=2(V0-E)/ 1/2。 这样把前面公式中的 k2 换成 ik3 并注意到: sin ik3a = i sinh k3a,即使 E V0,在一般情况下,透射系数 D 并不等于零。,因 k2=2(E-V0)/ 1/2,当 E V0 时,k2 是虚数,,隧道效应 (T-effect),(2)E V0情况故可令: k2=

    注意事项

    本文(QM2-波函数及薛定谔方程课件.ppt)为本站会员(牧羊曲112)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开