欢迎来到三一办公! | 帮助中心 三一办公31ppt.com(应用文档模板下载平台)
三一办公
全部分类
  • 办公文档>
  • PPT模板>
  • 建筑/施工/环境>
  • 毕业设计>
  • 工程图纸>
  • 教育教学>
  • 素材源码>
  • 生活休闲>
  • 临时分类>
  • ImageVerifierCode 换一换
    首页 三一办公 > 资源分类 > DOC文档下载
     

    数控车床加工工艺分析与程序的设计为单位.doc

    • 资源ID:1189905       资源大小:195KB        全文页数:25页
    • 资源格式: DOC        下载积分:10金币
    快捷下载 游客一键下载
    会员登录下载
    三方登录下载: 微信开放平台登录 QQ登录  
    下载资源需要10金币
    邮箱/手机:
    温馨提示:
    用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP免费专享
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    数控车床加工工艺分析与程序的设计为单位.doc

    . . . 第一章 数控车床对刀的方法与过程1.1直接用刀具试切对刀.1.1.1 直接用刀具试切对刀1.用外园车刀先试车一外园,记住当前X坐标,测量外园直径后,用X坐标减外园直径,所的值输入offset界面的几何形状X值里。 、2.用外园车刀先试车一外园端面,记住当前Z坐标,输入offset界面的几何形状Z值里。 1.1.2 用G50设置工件零点1.用外园车刀先试车一外园,测量外园直径后,把刀沿Z轴正方向退点,切端面到中心X轴坐标减去直径值。 2.选择MDI方式,输入G50 X0 Z0,启动START键,把当前点设为零点。 3.选择MDI方式,输入G0 X150 Z150 ,使刀具离开工件进刀加工。 4.这时程序开头:G50 X150 Z150 .。 5.注意:用G50 X150 Z150,你起点和终点必须一致即X150 Z150,这样才能保证重复加工不乱刀。 6.如用第二参考点G30,即能保证重复加工不乱刀,这时程序开头 G30 U0 W0 G50 X150 Z150 7.在FANUC系统里,第二参考点的位置在参数里设置,在Yhcnc软件里,按鼠标右键出现对话框,按鼠标左键确认即可。 1.1.3 用工件移设置工件零点1.在FANUC0-TD系统的Offset里,有一工件移界面,可输入零点偏移值。 2.用外园车刀先试切工件端面,这时Z坐标的位置如:Z200,直接输入到偏移值里。 3.选择"Ref"回参考点方式,按X、Z轴回参考点,这时工件零点坐标系即建立。 4.注意:这个零点一直保持,只有从新设置偏移值Z0,才清除。 1.1.4 用G54-G59设置工件零点1.用外园车刀先试车一外园,测量外园直径后,把刀沿Z轴正方向退点,切端面到中心。 2.把当前的X和Z轴坐标直接输入到G54-G59里,程序直接调用如:G54X50Z50。 3.注意:可用G53指令清除G54-G59工件坐标系。 FANUC系统确定工件坐标系有三种方法。 第一种是:通过对刀将刀偏值写入参数从而获得工件坐标系。这种方法操作简单,可靠性好,他通过刀偏与机械坐标系紧密的联系在一起,只要不断电、不改变刀偏值,工件坐标系就会存在且不会变,即使断电,重启后回参考点,工件坐标系还在原来的位置。 第二种是:用G50设定坐标系,对刀后将刀移动到G50设定的位置才能加工。对到时先对基准刀,其他刀的刀偏都是相对于基准刀的。 第三种方法是MDI参数,运用G54G59可以设定六个坐标系,这种坐标系是相对于参考点不变的,与刀具无关。这种方法适用于批量生产且工件在卡盘上有固定装夹位置的加工。 7.在FANUC系统里,第二参考点的位置在参数里设置,在Yhcnc软件里,按鼠标右键出现车床分有对刀器和没有对刀器,但是对刀原理都一样,先说没有对刀器的吧. 为<0,0>,这样势必造成基准的不统一,所以每次开机的第一步操作为参考点回归<有的称为回零点>,也就是通过确定<X,Z>来确定原点<0,0>。 为了计算和编程方便,我们通常将程序原点设定在工件右端面的回转中心上,尽量使编程基准与设计、装配基准重合。机械坐标系是机床唯一的基准,所以必须要弄清楚程序原点在机械坐标系中的位置。这通常在接下来的对刀过程中完成车床本身有个机械原点,你对刀时一般要试切的啊,比如车外径一刀后Z向退出,测量车件的外径是多少,然后在G画面里找到你所用刀号把光标移到X输入X.按测量机床就知道这个刀位上的刀尖位置了,径一样,Z向就简单了,把每把刀都在Z向碰一个地方然后测量Z0就可以了. 这样所有刀都有了记录,确定加工零点在工件移里面<offshift>,可以任意一把刀决定工件原点. 这样对刀要记住对刀前要先读刀. 有个比较方便的方法,就是用夹头对刀,我们知道夹头外径,刀具去碰了输入外径就可以,对径时可以拿一量块用手压在夹头上对,同样输入夹头外径就可以了. 如果有对刀器就方便多了,对刀器就相当于一个固定的对刀试切工件,刀具碰了就记录进去位置了. 所以如果是多种类小批量加工最好买带对刀器的.节约时间. 1.2 对刀仪自动对刀现在很多车床上都装备了对刀仪,使用对刀仪对刀可免去测量时产生的误差,大大提高对刀精度。由于使用对刀仪可以自动计算各把刀的刀长与刀宽的差值,并将其存入系统中,在加工另外的零件的时候就只需要对标准刀,这样就大大节约了时间。需要注意的是使用对刀仪对刀一般都设有标准刀具,在对刀的时候先对标准刀。 下面以采用FANUC 0T系统的日本WASINO LJ-10MC车削中心为例介绍对刀仪工作原理及使用方法。对刀仪工作原理如图3所示。刀尖随刀架向已设定好位置的对刀仪位置检测点移动并与之接触,直到部电路接通发出电信号<通常我们可以听到嘀嘀声并且有指示灯显示>。在2#刀尖接触到a点时将刀具所在点的X坐标存入到图2所示G02的X中,将刀尖接触到b点时刀具所在点的Z坐标存入到G02的Z中。其他刀具的对刀按照相同的方法操作。 事实上,在上一步的操作中只对好了X的零点以及该刀具相对于标准刀在X方向与Z方向的差值,在更换工件加工时再对Z零点即可。由于对刀仪在机械坐标系中的位置总是一定的,所以在更换工件后,只需要用标准刀对Z坐标原点就可以了。操作时提起Z轴功能测量按钮"Z-axis shift measure",CRT出现如图4所示的界面。 图4 对刀数值界面 手动移动刀架的X、Z轴,使标准刀具接近工件Z向的右端面,试切工件端面,按下"POSITION RECORDER"按钮,系统会自动记录刀具切削点在工件坐标系中Z向的位置,并将其他刀具与标准刀在Z方向的差值与这个值相加从而得到相应刀具的Z原点,其数值显示在WORK SHIFT工作画面上,如图5所示。 Fanuc系统数控车床对刀及编程指令介绍 Fanuc系统数控车床设置工件零点常用方法 第二章数控车床基本坐标关系及几种对刀方法比较2.1基本坐标关系一般来讲,通常使用的有两个坐标系:一个是机械坐标系 ;另外一个是工件坐标系,也叫做程序坐标系。两者之间的关系可用图1来表示。 图1 机械坐标系与工件坐标系的关系 在机床的机械坐标系中设有一个固定的参考点<假设为<X,Z>>。这个参考点的作用主要是用来给机床本身一个定位。因为每次开机后无论刀架停留在哪个位置,系统都把当前位置设定为<0,0>,这样势必造成基准的不统一,所以每次开机的第一步操作为参考点回归<有的称为回零点>,也就是通过确定<X,Z>来确定原点<0,0>。 为了计算和编程方便,我们通常将程序原点设定在工件右端面的回转中心上,尽量使编程基准与设计、装配基准重合。机械坐标系是机床唯一的基准,所以必须要弄清楚程序原点在机械坐标系中的位置。这通常在接下来的对刀过程中完成。 2.2对刀方法 对刀是数控加工中的主要操作和重要技能。在一定条件下,对刀的精度可以决定零件的加工精度,同时,对刀效率还直接影响数控加工效率。     仅仅知道对刀方法是不够的,还要知道数控系统的各种对刀设置方式,以及这些方式在加工程序中的调用方法,同时要知道各种对刀方式的优缺点、使用条件下面的论述是以FANUC OiMate数控系统为例等。 2.2.1 为什么要对刀      一般来说,零件的数控加工编程和上机床加工是分开进行的。数控编程员根据零件的设计图纸,选定一个方便编程的坐标系及其原点,我们称之为程序坐标系和程序原点。程序原点一般与零件的工艺基准或设计基准重合,因此又称作工件原点。      数控车床通电后,须进行回零参考点操作,其目的是建立数控车床进行位置测量、控制、显示的统一基准,该点就是所谓的机床原点,它的位置由机床位置传感器决定。由于机床回零后,刀具刀尖的位置距离机床原点是固定不变的,因此,为便于对刀和加工,可将机床回零后刀尖的位置看作机床原点。      在图1中,O是程序原点,O'是机床回零后以刀尖位置为参照的机床原点。图1 数控车削对刀原理    编程员按程序坐标系中的坐标数据编制刀具刀尖的运行轨迹。由于刀尖的初始位置机床原点与程序原点存在X向偏移距离和Z向偏移距离,使得实际的刀尖位置与程序指令的位置有同样的偏移距离,因此,须将该距离测量出来并设置进数控系统,使系统据此调整刀尖的运动轨迹。     所谓对刀,其实质就是侧量程序原点与机床原点之间的偏移距离并设置程序原点在以刀尖为参照的机床坐标系里的坐标。 2.2.2试切对刀原理      对刀的方法有很多种,按对刀的精度可分为粗略对刀和精确对刀;按是否采用对刀仪可分为手动对刀和自动对刀;按是否采用基准刀,又可分为绝对对刀和相对对刀等。但无论采用哪种对刀方式,都离不开试切对刀,试切对刀是最根本的对刀方法。图2 数控车削试刀对刀以图2为例,试切对刀步骤如下:  在手动操作方式下,用所选刀具在加工余量围试切工件外圆,记下此时显示屏中的X坐标值,记为Xa。注意:数控车床显示和编程的X坐标一般为直径值。 将刀具沿Z方向退回到工件端面余量处一点假定为点切削端面,记录此时显示屏中的Z坐标值,记为Za。 测量试切后的工件外圆直径,记为。 如果程序原点O设在工件端面一般必须是已经精加工完毕的端面与回转中心的交点,则程序原点O在机床坐标系中的坐标为 XoXa-<1 ZoZa 注意:公式中的坐标值均为负值。将Xo、Zo设置 进数控系统即完成对刀设置。 2.2.3程序原点工件原点的设置方式      在FANUC数控系统中,有以下几种设置程序原点的方式:设置刀具偏移量补偿;用G50设置刀具起点;用G54G59设置程序原点;用"工件移"设置程序原点。      程序原点设置是对刀不可缺少的组成部分。每种设置方法有不同的编程使用方式、不同的应用条件和不同的工作效率。各种设置方式可以组合使用。 1>设置刀具偏移量补偿车床的刀具补偿包括刀具的"磨损量"补偿参数和"形状"补偿参数,两者之和构成车刀偏移量补偿参数。试切对刀获得的偏移一般设置在"形状"补偿参数中。      试切对刀并设置刀偏步骤如下: 用外圆车刀试车-外圆,沿Z轴退出并保持X坐标不变。 测量外圆直径,记为。 按"OFSET SET"偏移设置键进入"形状"补偿参数设定界面将光标移到与刀位号相    对应的位置后,输人X注意:此处的代表直径值,而不是一符号,以下同,按"测量"键,系统自动按公式1>计算出X方向刀具偏移量如图3所示。      注意:也可在对应位置处直接输人经计算或从显示屏得到的数值,按"输人"键设置。用外圆车刀试车工件端面,沿X轴退出并保持Z坐标不变。 按"OFSET SET"键进人"形状"补偿参数设定界面将光标移到与刀位号相对应的位置后,输人Zo,按"测量"键,系统自动按公式1>计算出Z方向刀具偏移量。同样也可以自行"输入"偏移量。 设置的刀具偏移量在数控程序中用T代码调用。      这种方式具有易懂、操作简单、编程与对刀可以完全分开进行等优点。同时,在各种组合设置方式中都会用到刀偏设置,因此在对刀中应用最为普遍。<2用G50设置刀具起点 用外圆车刀试车一段外圆,沿Z轴退至端面余量的一点假定为a点。 测量外圆直径,记为。 选择"MDI"手动指令输入模式,输人GO1 U一F0. 3,切端面到中心程序原点。 选择"MDI"模式,输人G50 X0 ZO,按"启动"按钮。把刀尖当前位置设为机床坐标系中的坐标0,0,此时程序原点与机床原点重合。 选择"MDI"模式,输入GO X150 2200,使刀尖移动到起刀点。该点为刀具离开工件、便于换刀的任意位置,此处假设为b点,坐标为1.50、200>。 加工程序的开头必须是G50 X150 2200,即把刀尖所在位置设为机床坐标系的坐标<150,200>。此时刀尖的程序坐标150,200>与刀尖的机床坐标150,200>在同一位置,程序原点仍与机床原点重合。 当用G50 X150 2200设置刀具起点坐标时,基准刀程序起点位置和终点位置必须相同,即在程序结束前,需用指令GO X150 2200使基准刀具回到同一点,才能保证重复加工不乱刀。 若用第二参考点G30,并在数控系统的参数里将第二参考点设为起刀点位置,能保证重复加工不乱刀,此时程序开头为:G30 UO WO; G50 X150 Z200。 若不用上述、步骤中的GO1 UF0.3、G50 XO ZO.GO X150 2200指令来获得起刀点位置,也可用下述公式计算指定起刀点在机床坐标系显示屏中的坐标: Xb=Xa-1502> Zb=Za+200 然后用点动或脉冲操作,使刀尖移动到Xb,Zb位置。      注意:运行程序前要先将基准刀移到设定的位置。 在用G50设置刀具的起点时,一般要将该刀的刀偏值设为零。      此方式的缺点是起刀点位置要在加工程序中设置,且操作较为复杂。但它提供了用手工精确调整起刀点的操作方式,有的人对此比较喜欢。 <3>用G54G59设置程序原点 试切和测量步骤同前述一样。 按"OFSET SET"键,进人"坐标系"设置,移动光标到相应位置,输入程序原点的坐标值,按"测量"或"输入"键进行设置。如图4所示。 在加工程序里调用,例如:G55 X100 Z5.。G54为默认调用。 注意:若设置和使用了刀偏补偿,最好将G54G59的各个参数设为0,以免重复出错。对于多刀加工,可将基准刀的偏移值设置在G54G59的其中之一,将基准刀的刀偏补偿设为零,而将其它刀的刀偏补偿设为其相对于基准刀的偏移量。      这种方式适用于批量生产且工件在卡盘上有固定装夹位置的加工。铣削加工用得较多。      执行G54G59指令相当于将机床原点移到程序原点。 <4>用"工件移"设置程序原点 通过试切工件外圆、端面,测量直径,根据公式1>计算出程序原点工件原点的X坐标,记录显示屏显示的原点Z坐标。 按"OFSET SET"键,进入"工件移"设置,将光标移到对应位置,分别输入得到的X. Z坐标值,按机床MDI键盘上的"INPUT"键进行设置。如图5所示。 使X、Z轴回机床原点参考点,建立程序原点坐标。      "工件移"设置亦相当于将机床原点移到程序原点工件原点。对于单刀加工,如果设置了"工件移",最好将其刀偏补偿设为0,以防重复出错;对于多刀加工,"工件移"中的数值为基准刀的偏移值,将其它刀具相对于基准刀的偏移值设置在相应的刀偏补偿中。 2.2.4多刀对刀   FANUC数控系统多刀对刀的组合设置方式有:绝对对刀;基准刀G50相对刀偏;基准刀"工件移"相对刀偏;基准刀G54G59相对刀偏。 <1绝对对刀所谓绝对对刀即是用每把刀在加工余量围进行试切对刀,将得到的偏移值设置在相应刀号的偏置补偿中。这种方式思路清晰,操作简单,各个偏移值不互相关联,因而调整起来也相对简单,所以在实际加工中得到广泛应用。 <2相对对刀所谓相对对刀即是选定一把基准刀,用基准刀进行试切对刀,将基准刀的偏移用G50,"工件移"或G54G59来设置,将基准刀的刀偏补偿设为零,而将其它刀具相对于基准刀的偏移值设置在各自的刀偏补偿中。   下面以图2所示为例,介绍如何获得其它刀相对基准刀的刀偏值。 当用基准刀试切完外圆,沿Z轴退到a点时,按显示器下方的"相对"软键,使显示屏显示机床运动的相对坐标。 选择"MDI"方式,按"SHIFT"换档键,按"XU"选择U,这时U坐标在闪烁,按"ORIGIN"置零,如图6所示。同样将w坐标置零。 换其它刀,将刀尖对准a点,显示屏上的U坐标、W坐标即为该刀相对于基准刀的刀偏值。此外,还可用对刃仪测定相对刀偏值。图6 设置相对坐标零点2.2.5精确对刀      从理论上说,上述通过试切、测量、计算;得到的对刀数据应是准确的,但实际上由于机床的定位精度、重复精度、操作方式等多种因素的影响,使得手动试切对刀的对刃精度是有限的,因此还须精确对刀。      所谓精确对刀,就是在零件加工余量围设计简单的自动试切程序,通过"自动试切测量误差补偿"的思路,反复修调偏移量、或基准刀的程序起点位置和非基准刀的力偏置,使程序加工指令值与实际测量值的误差达到精度要求。由于保证基准刀程序起点处于精确位置是得到准确的非基准刀刀偏置的前提,因此一般修正了前者后再修正后者。      精确对刀偏移量的修正公式为: 记:=理论值程序指令值-实际值测量值,则 xo2=xo1 x3 Zo2=Zo1-Z      注意:值有正负号。      例如:用指令试切一直径40、长度为50的圆柱,如果测得的直径和长度分别为040.25和49.85,则该刀具在X、Z向的偏移坐标分别要加上-0.25和-0.15,当然也可以保持原刀偏值不变,而将误差加到磨损栏。 2.3 Fanuc系统数控车床对刀及编程指令介绍一, 直接用刀具试切对刀1.用外园车刀先试车一外园,记住当前X坐标,测量外园直径后,用X坐标减外园直径,所的值输入offset界面的几何形状X值里。2.用外园车刀先试车一外园端面,记住当前Z坐标,输入offset界面的几何形状Z值里。二, 用G50设置工件零点1.用外园车刀先试车一外园,测量外园直径后,把刀沿Z轴正方向退点,切端面到中心<X轴坐标减去直径值>。2.选择MDI方式,输入G50 X0 Z0,启动START键,把当前点设为零点。3.选择MDI方式,输入G0 X150 Z150 ,使刀具离开工件进刀加工。4.这时程序开头:G50 X150 Z150 .。5.注意:用G50 X150 Z150,你起点和终点必须一致即X150 Z150,这样才能保证重复加工不乱刀。6.如用第二参考点G30,即能保证重复加工不乱刀,这时程序开头 G30 U0 W0 G50 X150 Z1507.在FANUC系统里,第二参考点的位置在参数里设置,在Yhcnc软件里,按鼠标右键出现对话框,按鼠标左键确认即可。三, 用工件移设置工件零点1.在FANUC0-TD系统的Offset里,有一工件移界面,可输入零点偏移值。2.用外园车刀先试切工件端面,这时Z坐标的位置如:Z200,直接输入到偏移值里。3.选择"Ref"回参考点方式,按X、Z轴回参考点,这时工件零点坐标系即建立。4.注意:这个零点一直保持,只有从新设置偏移值Z0,才清除。四, 用G54-G59设置工件零点1.用外园车刀先试车一外园,测量外园直径后,把刀沿Z轴正方向退点,切端面到中心。2.把当前的X和Z轴坐标直接输入到G54-G59里,程序直接调用如:G54X50Z50。3.注意:可用G53指令清除G54-G59工件坐标系。FANUC系统确定工件坐标系有三种方法。第一种是:通过对刀将刀偏值写入参数从而获得工件坐标系。这种方法操作简单,可靠性好,他通过刀偏与机械坐标系紧密的联系在一起,只要不断电、不改变刀偏值,工件坐标系就会存在且不会变,即使断电,重启后回参考点,工件坐标系还在原来的位置。第二种是:用G50设定坐标系,对刀后将刀移动到G50设定的位置才能加工。对到时先对基准刀,其他刀的刀偏都是相对于基准刀的。第三种方法是MDI参数,运用G54G59可以设定六个坐标系,这种坐标系是相对于参考点不变的,与刀具无关。这种方法适用于批量生产且工件在卡盘上有固定装夹位置的加工。航天数控系统的工件坐标系建立是通过G92 Xa zb <类似于FANUC的G50>语句设定刀具当前所在位置的坐标值来确定。加工前需要先对刀,对到实现对的是基准刀,对刀后将显示坐标清零,对其他刀时将显示的坐标值写入相应刀补参数。然后测量出对刀直径d,将刀移动到坐标显示X=a-d Z=b 的位置,就可以运行程序了<此种方法的编程坐标系原点在工件右端面中心>。在加工过程中按复位或急停健,可以再回到设定的G92 起点继续加工。但如果出意外如:X或Z轴无伺服、跟踪出错、断电等情况发生,系统只能重启,重其后设定的工件坐标系将消失,需要重新对刀。如果是批量生产,加工完一件后回G92起点继续加工下一件,在操作过程中稍有失误,就可能修改工件坐标系,需重新对刀。鉴于这种情况,我们就想办法将工件坐标系固定在机床上。我们发现机床的刀补值有16个,可以利用,于是我们试验了几种方法。第一种方法:在对基准刀时,将显示的参考点偏差值写入9号刀补,将对刀直径的反数写入8号刀补的X值。系统重启后,将刀具移动到参考点,通过运行一个程序来使刀具回到工件G92起点,程序如下:N001 G92 X0 Z0;N002 G00 T19;N003 G92 X0 Z0;N004 G00 X100 Z100;N005 G00 T18;N006 G92 X100 Z100;N007 M30;程序运行到第四句还正常,运行第五句时,刀具应该向X的负向移动,但却异常的向X、Z的正向移动,结果失败。分析原因怀疑是同一程序调一个刀位的两个刀补所至。第二种方法:在对基准刀时,将显示的与参考点偏差的Z值写入9号刀补的Z值,将显示的X值与对刀直径的反数之和写入9好刀补的X值。系统重启后,将刀具移至参考点,运行如下程序:N001 G92 X0 Z0;N002 G00 T19;N003 G00 X100 Z100;N004 M30;程序运行后成功的将刀具移至工件G92起点。但在运行工件程序时,刀具应先向X、Z的负向移动,却又异常的向X、Z的正向移动,结果又失败。分析原因怀疑是系统运行完一个程序后,运行的刀补还在存当中,没有清空,运行下一个程序时它先要作消除刀补的移动。第三种方法:用第二种方法的程序将刀具移至工件G92起点后,重启系统,不会参考点直接加工,试验后能够加工。但这不符合机床操作规程,结论是能行但不可行。第四种方法:在对刀时,将显示的与参考点偏差值个加上100后写入其对应刀补,每一把刀都如此,这样每一把刀的刀补就都是相对于参考点的,加工程序的G92起点设为X100 Z100,试验后可行。这种方法的缺点是每一次加工的起点都是参考点,刀具移动距离较长,但由于这是G00 快速移动,还可以接受。第五种方法:在对基准刀时将显示的与参考点偏差及对刀直径都记录下来,系统一旦重启,可以手动的将刀具移动到G92 起点位置。这种方法麻烦一些,但还可行。2.4数铣对刀数控车床对刀有关的概念和对刀方法 1刀位点:代表刀具的基准点,也是对刀时的注视点,一般是刀具上的一点。 2起刀点:起刀点是刀具相对与工件运动的起点,即零件加工程序开始时刀位点的起始位置,而且往往还是程序的 运行的终点。3对刀点与对刀:对刀点是用来确定刀具与工件的相对位置关系的点,是确定工件坐标系与机床坐标系的关系的点。 对刀就是将刀具的刀位点置于对刀点上,以便建立工件坐标系。4对刀基准点:对刀时为确定对刀点的位置所依据的基准,该基可以是点、线、面,它可以设在工件上或夹具上 或机床上。 5对刀参考点:是用来代表刀架、刀台或刀盘在机床坐标系的位置的参考点,也称刀架中心或刀具参考点。 用试切法确定起刀点的位置对刀的步骤 1在MDI或手动方式下,用基准刀切削工件端面; 2用点动移动X轴使刀具试切该端面,然后刀具沿X轴方向退出,停主轴。 记录该Z轴坐标值并输入系统。 3用基准刀切量工件外径。 4用点动移动Z轴使刀具切该工件的外圆表面,然后刀具沿Z方向退出,停主轴。用游表卡尺测量工件的直径,记录该 X坐标值并输入系统。 5对第二把刀,让刀架退离工件足够的地方,选择刀具号,重复14步骤。 数控铣床<加工中心>Z轴对刀器 Z轴对刀器主要用于确定工件坐标系原点在机床坐标系的Z轴坐标,或者说是确定刀具在机床坐标系中的高度。Z轴对刀器有光电式和指针式等类型,通过光电指示或指针,判断刀具与对刀器是否接触,对刀精度一般可达 100.0±0.0025mm,对刀器标定高度的重复精度一般为0.0010.002mm。对刀器带有磁性表座可以牢固地附着在工件或夹具上。Z轴对刀器高度一般为50mm或lOOmm。 Z轴对刀器的使用方法如下: 1将刀具装在主轴上,将Z轴对刀器吸附在已经装夹好的工件或夹具平面上。 2快速移动工作台和主轴,让刀具端面靠近Z轴对刀器上表面。 3改用步进或电子手轮微调操作,让刀具端面慢慢接触到Z轴对刀器上表面,直到Z轴对刀器发光或指针指示到零位。4记下机械坐标系中的Z值数据。5在当前刀具情况下,工件或夹具平面在机床坐标系中的Z坐标值为此数据值再减去Z轴对刀器的高度。 6若工件坐标系Z坐标零点设定在工件或夹具的对刀平面上,则此值即为工件坐标系Z坐标零点在机床坐标系中的位置,也就是Z坐标零点偏置值。 3寻边器 寻边器主要用于确定工件坐标系原点在机床坐标系中的X、Y零点偏置值,也可测量工件的简单尺寸。它有偏心式、迥转式和光电式等类型。 偏心式、迥转式寻边器为机械式构造。机床主轴中心距被测表面的距离为测量圆柱的半径值。 光电式寻边器的测头一般为10mm的钢球,用弹簧拉紧在光电式寻边器的测杆上,碰到工件时可以退让,并将电路导通,发出光讯号。通过光电式寻边器的指示和机床坐标位置可得到被测表面的坐标位置。利用测头的对称性,还可以测量一些简单的尺寸。第三章 数控车床刀具及其正确选用3.1 数控加工常用刀具的种类及特点一、数控加工常用刀具的种类及特点数控加工刀具必须适应数控机床高速、高效和自动化程度高的特点,一般应包括通用刀具、通用连接刀柄及少量专用刀柄。刀柄要联接刀具并装在机床动力头上,因此已逐渐标准化和系列化。数控刀具的分类有多种方法。根据刀具结构可分为: 整体式; 镶嵌式,采用焊接或机夹式连接,机夹式又可分为不转位和可转位两种; 特殊型式,如复合式刀具,减震式刀具等。根据制造刀具所用的材料可分为 :高速钢刀具; 硬质合金刀具 ;金刚石刀具 ;其他材料刀具,如立方氮化硼刀具,瓷刀具等。从切削工艺上可分为: 车削刀具,分外圆、孔、螺纹、切割刀具等多种 ;钻削刀具,包括钻头、铰刀、丝锥等; 镗削刀具; 铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%40%,金属切除量占总数的80%90%。数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点:刚性好尤其是粗加工刀具,精度高,抗振及热变形小;互换性好,便于快速换刀;寿命高,切削性能稳定、可靠;刀具的尺寸便于调整,以减少换刀调整时间;刀具应能可靠地断屑或卷屑,以利于切屑的排除;系列化,标准化,以利于编程和刀具管理。3.2 数控加工刀具的选择二、数控加工刀具的选择刀具的选择是在数控编程的人机交互状态下进行的。应根据机床的加工能力、工件材料的性能、加工工序、切削用量以及其它相关因素正确选用刀具及刀柄。刀具选择总的原则是:安装调整方便,刚性好,耐用度和精度高。在满足加工要求的前提下,尽量选择较短的刀柄,以提高刀具加工的刚性。选取刀具时,要使刀具的尺寸与被加工工件的表面尺寸相适应。生产中,平面零件周边轮廓的加工,常采用立铣刀;铣削平面时,应选硬质合金刀片铣刀;加工凸台、凹槽时,选高速钢立铣刀;加工毛坯表面或粗加工孔时,可选取镶硬质合金刀片的玉米铣刀;对一些立体型面和变斜角轮廓外形的加工,常采用球头铣刀、环形铣刀、锥形铣刀和盘形铣刀。在进行自由曲面加工时,由于球头刀具的端部切削速度为零,因此,为保证加工精度,切削行距一般取得很能密,故球头常用于曲面的精加工。而平头刀具在表面加工质量和切削效率方面都优于球头刀,因此,只要在保证不过切的前提下,无论是曲面的粗加工还是精加工,都应优先选择平头刀。另外,刀具的耐用度和精度与刀具价格关系极大,必须引起注意的是,在大多数情况下,选择好的刀具虽然增加了刀具成本,但由此带来的加工质量和加工效率的提高,则可以使整个加工成本大大降低。在加工中心上,各种刀具分别装在刀库上,按程序规定随时进行选刀和换刀动作。因此必须采用标准刀柄,以便使钻、镗、扩、铣削等工序用的标准刀具,迅速、准确地装到机床主轴或刀库上去。编程人员应了解机床上所用刀柄的结构尺寸、调整方法以及调整围,以便在编程时确定刀具的径向和轴向尺寸。目前我国的加工中心采用TSG工具系统,其刀柄有直柄三种规格和锥柄四种规格两种,共包括16种不同用途的刀柄。在经济型数控加工中,由于刀具的刃磨、测量和更换多为人工手动进行,占用辅助时间较长,因此,必须合理安排刀具的排列顺序。一般应遵循以下原则: 尽量减少刀具数量 ;一把刀具装夹后,应完成其所能进行的所有加工部位; 粗精加工的刀具应分开使用,即使是相同尺寸规格的刀具; 先铣后钻; 先进行曲面精加工,后进行二维轮廓精加工; 在可能的情况下,应尽可能利用数控机床的自动换刀功能,以提高生产效率等。 钻削刀具,包括钻头、铰刀、丝锥等; 镗削刀具; 铣削刀具等。为了适应数控机床对刀具耐用、稳定、易调、可换等的要求,近几年机夹式可转位刀具得到广泛的应用,在数量上达到整个数控刀具的30%40%,金属切除量占总数的80%90%。数控刀具与普通机床上所用的刀具相比,有许多不同的要求,主要有以下特点:刚性好尤其是粗加工刀具,精度高,抗振及热变形小;互换性好,便于快速换刀;寿命高,切削性能稳定、可靠;刀具的尺寸便于调整,以减少换刀调整时间;刀具应能可靠地断屑或卷屑,以利于切屑的排除;系列化,标准化,以利于编程和刀具管理。3.3 加工过程中切削用量的确定理选择切削用量的原则是,粗加工时,一般以提高生产率为主,但也应考虑经济性和加工成本;半精加工和精加工时,应在保证加工质量的前提下,兼顾切削效率、经济性和加工成本。具体数值应根据机床说明书、切削用量手册,并结合经验而定。切削深度t。在机床、工件和刀具刚度允许的情况下,t就等于加工余量,这是提高生产率的一个有效措施。为了保证零件的加工精度和表面粗糙度,一般应留一定的余量进行精加工。数控机床的精加工余量可略小于普通机床。切削宽度L。一般L与刀具直径d成正比,与切削深度成反比。经济型数控加工中,一般L的取值围为:L=0.60.9d。切削速度v。提高v也是提高生产率的一个措施,但v与刀具耐用度的关系比较密切。随着v的增大,刀具耐用度急剧下降,故v的选择主要取决于刀具耐用度。另外,切削速度与加工材料也有很大关系,例如用立铣刀铣削合金刚30CrNi2MoVA时,v可采用8m/min左右;而用同样的立铣刀铣削铝合金时,v可选200m/min以上。主轴转速n<r/min>。主轴转速一般根据切削速度v来选定。计算公式为:式中,d为刀具或工件直径mm。数控机床的控制面板上一般备有主轴转速修调倍率开关,可在加工过程中对主轴转速进行整倍数调整。进给速度vF 。vF应根据零件的加工精度和表面粗糙度要求以及刀具和工件材料来选择。vF的增加也可以提高生产效率。加工表面粗糙度要求低时,vF可选择得大些。在加工过程中,vF也可通过机床控制面板上的修调开关进行人工调整,但是最大进给速度要受到设备刚度和进给系统性能等的限制。随着数控机床在生产实际中的广泛应用,数控编程已经成为数控加工中的关键问题之一。在数控程序的编制过程中,要在人机交互状态下即时选择刀具和确定切削用量。因此,编程人员必须熟悉刀具的选择方法和切削用量的确定原则,从而保证零件的加工质量和加工效率,充分发挥数控机床的优点,提高企业的经济效益和生产水平深入理解数控车床的对刀原理对于操作者保持清晰的对刀思路、熟练掌握对刀操作以及提出新的对刀方法都具有指导意义。对刀的实质是确定随编程而变化的工件坐标系的程序原点在唯一的机床坐标系中的位置。对刀的主要工作是获得基准刀程序起点的机床坐标和确定非基准刀相对于基准刀的刀偏置。本文作以下约定来说明试切法对刀的原理与思路:使用华中世纪星教学型车削系统HNC-21T应用软件版本号为5.30;以工件右端面中心为程序原点,用G92指令设定工件坐标系;直径编程,程序起点H的工件坐标为100,50;刀架上装四把刀:1号刀为90°外圆粗车刀、2号基准刀为90°外圆精车刀、3号刀为切断刀、4号刀为60°三角螺纹刀全文所举实例均与此相同。如图1所示,基准刀按照"手动试切工件的外圆与端面,分别记录显示器CRT显示试切点A的X、Z机床坐标推出程序原点O的机床坐标推出程序起点H的机床坐标"的思路对刀。根据A点与O点的机床坐标的关系:XO= XAd,ZO =ZA,可以推出程序原点O的机床坐标。再根据H相对于O点的工件坐标为<100,50>,最后推出H点的机床坐标:XH=100d,ZH= ZA 50。这样建立的工件坐标系是以基准刀的刀尖位置建立的工件坐标系。图1 手动试切对刀示意图如图2所示,由于各刀装夹在刀架的X、Z方向的伸长和位置不同,当非基准刀转位到加工位置时,刀尖位置B相对于A点就有偏置,原来建立的工件坐标系就不再适用了。此外,每把刀具在使用过程中还会出现不同程度的磨损,因此各刀的刀偏置和磨损值需要进行补偿。获得各刀刀偏置的基本原理是:各刀均对准工件上某一基准点如图1的A点或O点,由于CRT显示的机床坐标不同,因此将非基准刀在该点处的机床坐标通过人工计算或系统软件计算减去基准刀在同样点的机床坐标,就得到了各非基准刀的刀偏置。图2 刀具的偏置和磨损补偿受多种因素的影响,手动试切对刀法的对刀精度十分有限,将这一阶段的对刀称为粗略对刀。为得到更加准确的结果,如图3所示,加工前在零件加工余量围设计简单的自动试切程序,通过"自动试切测量误差补偿"的思路,反复修调基准刀的程序起点位置和非基准刀的刀偏置,使程序加工指令值与实际测量值的误差达到精度要求,将这一阶段的对刀称为精确对刀。由于保证基准刀程序起点处于精确位置是得到准确的非基准刀刀偏置的前提,因此一般修正了前者后再修正后者。综合这两个阶段的对刀,试切法对刀的基本操作流程如下:用基准刀手动试切得到对刀基准点的机床坐标人工计算或自动获得各非基准刀的刀偏置基准刀处于大概的程序起点位置基准刀反复调用试切程序,测量尺寸后,以步进或MDI方式移动刀架进行误差补偿,修正其程序起点的位置非基准刀反复调用试切程序,在原刀偏置的基础上修正刀偏置基准刀处于

    注意事项

    本文(数控车床加工工艺分析与程序的设计为单位.doc)为本站会员(李司机)主动上传,三一办公仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知三一办公(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    备案号:宁ICP备20000045号-2

    经营许可证:宁B2-20210002

    宁公网安备 64010402000987号

    三一办公
    收起
    展开